Method for processing a semiconductor wafer

Abrading – Abrading process – Glass or stone abrading

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S693000, C216S088000

Reexamination Certificate

active

06227944

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to a method and pressure jetting machine for processing semiconductor wafers, and more specifically to a method and pressure jetting machine which improves the flatness of semiconductor wafers while providing a polished front surface and a damaged back surface suitable for inducing extrinsic gettering during subsequent processing of the wafer.
Semiconductor wafers are generally prepared from a single-crystal ingot, such as a silicon ingot, which is trimmed and ground to have one or more flats for proper orientation of the wafer in subsequent procedures. The ingot is then sliced into individual wafers which are each subjected to a number of wafer shaping or processing operations to reduce the thickness of the wafer, remove damage caused by the slicing operation, and to create a highly reflective surface.
In conventional wafer shaping processes, the peripheral edge of each wafer is first rounded, such as by an edge grinding operation, to reduce the risk of wafer damage during further processing. Next, a substantial amount of material is removed from the front and back surface of each wafer to remove surface damage induced by the slicing operation and to make the opposing front and back surfaces flat and parallel. This removal of material is accomplished by subjecting the front and back surfaces of the wafers to a conventional lapping operation (which uses a lapping slurry comprising abrasive particles), or a conventional grinding operation (which uses a disc with abrasive particles embedded therein), or even a combination of both lapping and grinding operations. The wafers are then etched by contacting each wafer with a chemical etchant to further reduce the thickness of the wafer and remove mechanical damage produced by the lapping and/or grinding operation.
Finally, the front surface of each wafer is polished, using a polishing pad and a polishing slurry comprising abrasive particles and a chemical etchant, to remove a small amount of material from the front surface of each wafer. The polishing operation removes damage induced by the etching operation and produces a highly reflective, damage-free front surface on each wafer.
In determining the quality of the processed semiconductor wafer, the flatness of the wafer is a critical parameter to customers since wafer flatness has a direct impact on the subsequent use and quality of semiconductor chips diced from the wafer. The flatness may be determined by a number of measuring methods. For example, “Taper” is a measurement of the lack of parallelism between the unpolished back surface and a selected focal plane of the wafer. “STIR”, or Site Total Indicated Reading, is the difference between the highest point above the selected focal plane and the lowest point below the focal plane for a selected portion (e.g., 1 square cm.) of the wafer, and is always a positive number. “SFPD”, or Site Focal Plane Deviation, is the highest point above, or the lowest point below, the chosen focal plane for a selected portion (e.g., 1 square cm.) of the wafer and may be a positive or negative number. “TTV”, or Total Thickness Variation, which is frequently used to measure global flatness variation, is the difference between the maximum and minimum thicknesses of the wafer. TTV in the wafer is also an important indicator of the quality of the polish of the wafer.
With respect to wafer flatness, the conventional method of processing a semiconductor wafer described above has a number of disadvantages. For example, etching the wafer in an acid-based etchant generally deteriorates the flatness produced by the lapping or grinding operation. In addition, the flatness performance of the single-side polishing operation is inconsistent, depending primarily on the shape of the wafer being polished. The single-side polishing operation is a single-side planarization process, which limits its flattening capability.
In order to overcome this limitation and meet the demand for flatter wafers, a double-side polishing operation has become the polishing process of choice by wafer manufacturers. In a double-side polishing operation, the front and back surfaces of each wafer are polished simultaneously so that removal of material occurs uniformly on both sides of the wafer. Typically, equipment used for double-side polishing operations includes opposing rotating pads (one corresponding to each side of the wafer) that rotate in opposite directions while working the polishing slurry against the wafer. However, double-side polishing operations produce wafers generally having equally polished front and back surfaces, with little damage remaining on the back surface. This has been found to be undesirable to customers because of the lack of extrinsic gettering sites on the back surface of the wafers. Rather, these customers prefer wafers having a polished front surface and a back surface having subsurface damage to induce extrinsic gettering in subsequent processing operations.
Also, in conventional processes where the surfaces of the wafer are subjected to single-side polishing operations, the back surface of the wafer is subjected to a damaging operation before rapid thermal annealing (RTA) for thermal donor annihilation, if required, and before the single-side polishing. RTA tends to reduce the amount of damage previously induced in the back surface and also induces warp during the single-side polishing operation.
SUMMARY OF THE INVENTION
Among the several objects of this invention may be noted the provision of a method for processing semiconductor wafers which improves the flatness of the wafers; the provision of such a method in which the processed wafers each have a polished, generally damage-free front surface and a back surface sufficiently damaged for inducing extrinsic gettering of the wafers during subsequent processing of the wafers; and the provision of such a method which is simple to perform.
Among the further objects of this invention may be noted the provision of a pressure jetting machine which protects the front surface of the wafer while the back surface of the wafer is sufficiently damaged by pressure jetting for inducing extrinsic gettering of the wafers during subsequent processing of the wafer.
Generally, a method of the present invention for processing a semiconductor wafer sliced from a single-crystal ingot comprises subjecting the front and back surfaces of the wafer to a lapping operation to reduce the thickness of the wafer and to remove damage caused during slicing of the wafer. The wafer is then subjected to an etching operation in which the wafer is immersed in a chemical etchant to further reduce the thickness of the wafer and to further remove damage remaining after the lapping operation. The wafer is subsequently subjected to a double-side polishing operation in which material is concurrently and uniformly removed from the front and back surfaces of the wafer to uniformly remove damage caused by the lapping and etching operations, thereby improving the flatness of the wafer and leaving polished front and back surfaces. Finally, the back surface of the wafer is subjected to a back surface damaging operation in which damage is induced in the back surface of the wafer while the front surface is substantially protected against being damaged or roughened.
A device of the present invention for use in a pressure jetting machine of the type having a wafer support surface for supporting a wafer in the machine and a nozzle through which an abrasive slurry is jetted against the wafer to induce damage in at least one surface of the wafer generally comprises a wafer holder having an upper end and a lower end adapted for seating on the support surface of the pressure jetting machine. The wafer holder is configured for receiving a wafer therein and supporting the wafer in a generally horizontal orientation in spaced relationship above the support surface of the pressure jetting machine. One surface of the wafer faces upward and is exposed to abrasive slurry jetted from the nozzle and the other s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for processing a semiconductor wafer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for processing a semiconductor wafer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for processing a semiconductor wafer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2482269

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.