Semiconductor device manufacturing: process – Chemical etching – Combined with the removal of material by nonchemical means
Reexamination Certificate
2002-05-22
2003-04-29
Goudreau, George (Department: 1763)
Semiconductor device manufacturing: process
Chemical etching
Combined with the removal of material by nonchemical means
C438S693000, C438S694000, C438S749000, C438S751000, C438S754000, C134S001300
Reexamination Certificate
active
06555477
ABSTRACT:
FIELD OF THE INVENTION
This invention generally relates to chemical mechanical polishing (CMP) and more particularly to a method for preventing copper (Cu) corrosion due to localized chemical potentials during a chemical mechanical polishing (CMP) process.
BACKGROUND OF THE INVENTION
In semiconductor fabrication integrated circuits and semiconducting devices are formed by sequentially forming features in sequential layers of material in a bottom-up manufacturing method. The manufacturing process utilizes a wide variety of deposition techniques to form the various layered features including various etching techniques such as anisotropic plasma etching to form device feature openings followed by deposition techniques to fill the device features. In order to form reliable devices, close tolerances are required in forming features including photolithographic patterning methods which rely heavily on layer planarization techniques to maintain a proper depth of focus.
Planarization is increasingly important in semiconductor manufacturing techniques. As device sizes decrease, the importance of achieving high resolution features through photolithographic processes correspondingly increases thereby placing more severe constraints on the degree of planarity required of a semiconductor wafer processing surface. Excessive degrees of surface nonplanarity will undesirably affect the quality of several semiconductor manufacturing process including, for example, photolithographic patterning processes, where the positioning the image plane of the process surface within an increasingly limited depth of focus window is required to achieve high resolution semiconductor feature patterns.
In the formation of conductive interconnections, copper is increasingly used for forming metal interconnects such as vias and trench lines since copper has low resistivity and good electromigration resistance compared to other traditional interconnect metals such as aluminum. The undesirable contribution to electrical parasitic effects by metal interconnect residual resistivity has become increasingly important as device sizes have decreased.
Chemical mechanical polishing (CMP) is increasingly being used as a planarizing process for semiconductor device layers, especially for devices having multi-level design and smaller semiconductor fabrication processes, for example, having line widths below about 0.25 micron. CMP planarization is typically used several different times in the manufacture of a multi-level semiconductor device, including planarizing levels of a device containing both dielectric and metal portions to achieve global planarization for subsequent processing of overlying levels. For example, CMP is used to remove excess metal after filling conductive metal interconnect openings formed in dielectric insulating layers with metal to form features such as vias and trench lines. The vias and trench lines electrically interconnect the several levels and areas within a level that make up a multi-level semiconductor device.
In a typical process for forming conductive interconnections in a multi-level semiconductor device, a damascene process is used to form vias and trench lines for interconnecting different levels and areas within levels of the multi-level device. Vias (e.g., V
1
, V
2
etc. lines) are generally used for vertically electrically interconnecting semiconductor device levels and trench lines (e.g., M
1
, M
2
, etc. lines) are used for electrically interconnecting semiconductor device areas within a level. Vias and trench lines are typically formed as part of a damascene process. Although there are several different methods for forming damascene structures, one typical method generally involves patterning and anisotropically etching a semiconductor feature, for example a via opening within an dielectric insulating layer to form closed communication with a conductive area included in an underlying level of the multi-level device. A similar process is then used to pattern and anisotropically etch a trench line opening overlying and encompassing the via opening to form a dual damascene opening structure. The dual damascene structure is then filled with a metal, for example copper, followed by a CMP step to remove excess copper overlying the dielectric insulating layer, also referred to as an inter-metal dielectric (IMD) layer surface, and to planarize the IMD layer surface for subsequent formation of an overlying device level. The process is then repeated in an overlying IMD layer to form a series of stacked conductive lines which electrically communicate between and within the various layers to form a multi-level semiconductor device. Typically, vias and dual damascene structures are stacked above one another to reduce an overall space requirement for patterning a semiconductor device.
CMP generally includes mechanical polishing assisted by chemical action to achieve selective material removal. CMP generally includes mounting wafer on a carrier with the wafer process surface face-down to contact a flat polishing surface, typically a polishing pad mounted on a rotating platen, imparting a downforce to the wafer backside and moving the wafer and the polishing surface relative to one another. The polishing action is typically aided by a slurry which includes for example, small abrasive particles such as silica (SiO
2
), alumina (Al
2
O
3
), and ceria (CeO
2
) that abrasively act to remove a portion of the process surface. Additionally, the slurry may include chemicals such as complexing agents and film forming agents that react with the process surface to assist in removing a portion of the surface material, the slurry typically being introduced to contact the polishing pad and thereby the wafer process surface.
Several semiconductor feature defects can be associated with CMP polishing. For example, in CMP polishing metals, for example copper features included in an array of metal interconnects, the copper is removed or eroded at a faster rate than the surrounding field of insulating dielectric. This causes a topography difference between insulating dielectric and the dense copper array. Such erosion can lead to excess removal of copper such that overlying formation of electrical interconnecting features, for example, stacked vias, leads to electrical failure by causing discontinuous electrical communication pathways.
Another CMP induce defect is related to the formation of copper interconnect features such as copper filled vias and trenches and the practice of forming a conformal barrier/adhesion layer within the anisotropically etched features prior to filling with copper. The barrier/adhesion layer is formed to prevent diffusion of copper into the dielectric insulating layer (IMD) within which the vias and trench openings are formed. The barrier/adhesion layer typically includes a refractory metal such as Tantalum (Ta) or refractory metal nitride such as tantalum nitride (TaN). After filling of the anisotropically etched features with copper, for example by electroplating, a CMP process is carried out to first remove the excess copper overlying the barrier/adhesion layer and another CMP process performed to remove the barrier/adhesion layer overlying the IMD layer. During a portion of the CMP process, for example where both copper and barrier/adhesion material are exposed on the polishing surface, it is believed that a corrosive electrochemical reaction due to charge accumulation on the wafer surface and the presence of two dissimilar metals, for example tantalum and copper, results in corrosion of copper containing features. It is believed that the corrosive electrochemical reaction is due at least in part to locally induced Galvanic chemical potentials at the wafer surface, for example, at the copper/barrier layer interface where both the barrier layer and copper features are exposed to the polishing slurry.
For example, referring to
FIG. 1
is shown a portion of a multi-level semiconductor device including dual damascene structures e.g.,
10
,
12
and
13
,
15
forming stacked dual damascene
Chen Mei-Ling
Ho Chin-Hsiung
Huang Liang-Kun
Lu Chen-Fa
Goudreau George
Taiwan Semiconductor Manufacturing Co. Ltd.
Tung & Associates
LandOfFree
Method for preventing Cu CMP corrosion does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for preventing Cu CMP corrosion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for preventing Cu CMP corrosion will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3002930