Method for preparing pre-reacted batches of raw materials...

Compositions: ceramic – Ceramic compositions – Glass compositions – compositions containing glass other than...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C501S031000

Reexamination Certificate

active

06358870

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to batches of raw materials for preparing glass and more specifically to a method for preparing pre reacted batches of raw materials which are substantially free from gaseous carbon dioxide for the production of glass formulas.
2. Description of the Related Art
The batches for preparing molten glass have been provided, since many years, by feeding independent glass components typically silica, sodium carbonate, calcium carbonate, borates, feldspar, dolomite, kaolin, etc., in proportions according to a desired glass formulation, to a melting furnace at temperatures ranging between 1400° C. to 1600° C.
These typical batches include raw materials having different melting points and reacting at different temperatures under different operating conditions.
During the melting process of the raw materials, many different reactions take place in the glass melting furnace producing gaseous emissions in the form of bubbles which create the need for establishing a refining and conditioning zone for the molten glass mass in the furnace which, in turn, results in a limitation of the residence time of the molten mass, resulting in high melting temperatures and the need to carefully control environmental emission restrictions.
Additionally, because of the high temperatures and corrosive nature of the diverse types of reactions taking place in the melting furnace, the life of the melting furnace is always an important issue.
U.S. Pat. No 3,082,102 issued to Cole et al, discloses a process for producing molten glass by maintaining the glass batch at a temperature and for a time sufficient to complete chemical reaction between component particles while the batch as a whole remains in solid state at the completion of the fraction, before subjecting the embryo glass so formed to a temperature high enough to melt the embryo glass.
U.S. Pat. No 4,920,080 issued to Demarsest, discloses a method for pre-heating and pre-reacting all portions of the batch prior to the melting step, in two separate portions, a first portion of SiO
2
with Na
2
CO
3
in a first pre-reaction zone at sufficient time and temperature to form a product consisting predominantly of sodium silicate, and heating a second portion of SiO
2
with CaCO
3
in a second pre-reaction zone at sufficient time and temperature to render the calcium source free of carbonates.
It can be concluded from the methods disclosed in the above mentioned patents that efforts have been made to provide pre-reacted raw materials in which gaseous compounds have advantageously been eliminated.
However, the above disclosed methods treat all the batch mixtures at temperatures finely controlled to avoid that the reactions taking place do not form a liquid melting phase because of the danger representing the difficulty of handling a batch including solid and liquid phases.
Applicants have concluded that a batch for the different purposes, mainly for flat glass, container glass (soda-lime and boro-silicate glass), glass fiber, etc., consists of a molecular formula comprising a diverse number of molecules of Si, Na, Ca, Mg, Bo, etc., which can be clearly approximated from natural, substances, partially treated minerals or intermediate products of treated minerals, including molecular systems of Si—Na, Si—Na—Ca, Si—Na—Mf, Si—Ca—Mg, Si—Na—Ca—Mg and mixtures thereof some of which are in the form of already pre-reacted substances and some of which have to be conveniently pre-reacted in a calcining burner and, in either case, they are substantially free from gaseous carbon dioxide.
Furthermore, Applicants have discovered that, if phase diagrams are prepared for the different molecular systems of raw materials, it is possible to select molecular formulas having decomposing and/or melting temperatures well above at least 1000° C. below which not only melting glass or liquid phase is not formed, but also the release of carbon dioxide can be clearly carried out, which are selected from invariant points or from points on a line connecting invariant points of phase diagrams of said molecular systems, and combine them to reach or approach the desired molecular glass formula, completing this by adding pure silica when necessary.
Phase diagrams of the above disclosed nature can be found for example in the papers of K. A. Shahid & F. P. Glosser “Phse equibria un the glass forming region of the system Na
2
O—CaO—MgO—SiO
2
” published in Physics and Chemistry of Glasses Vol. 13 No. 2 April 1972; and of G. W. Morey and N. L. Bowen, “Corner of system Na
2
O—CaO—SiO
2
” published by the Soc. Glass Technol., 9pp. 232, 233 (1925).
What it is looked for, is to saturate the sodium, calcium and in general all the elements of a glass formula that are handled with raw materials containing CO
2
, to provide the specific molecular glass formula or at least a best approach of the molecular formula, completing the balance by providing silica sand
In this way, it is possible to provide a pre-reacted batch of raw materials for a specific molecular glass formula which:
1. Is greatly stable;
2. Melts faster and better;
3. Does not produce any bubbles due to the decomposition of the CO
2
components contained in the traditionally used raw material;
4. Reacts or melts at above 1000° C.
5. Is prepared by heating typical raw materials and reacting them as a solid-solid mixture which is de-carbonated between 840° C. and 870° C:
6. Allows the possibiity of improving the glass quality and/or increasing the production rate and or reducing thermal input as well as reducing temperature conditions in the furnace.
7. Allows the possibility of reducing environmental emissions.
8. Allows the possibility of increasing furnace life and/or reducing the size of the furnace for previously equal throughputs.
SUMMARY OF THE INVENTION
It is therefore a main object of the present invention, to provide a method for preparing pre-reacted batches of raw materials for the production of glass formulas, by providing stoichiometric amounts of substances containing molecular systems of silica-sodium, silica-sodium-calcium, silica-sodium-magnesium, silica-calcium-magnesium, silica-sodium-calcium-magnesium and mixtures thereof having reaction temperatures which do not form a liquid phase, which are selected from invariant points or from points on a line connecting invariant points of phase diagrams of said molecular systems, to complete or approach a desired molecular glass formula.
it is also a main object of the present invention, to provide a method for preparing pre-reacted batches of raw materials for the production of glass formulas, of the above disclosed nature, in which the pre-reacted batches are prepared by heating typical raw materials reacting them as a solids-solids mixture which is de-carbonated between 840° C. and 870° C.
It is still a main object of the present invention, to provide a method for preparing pre-reacted batches of raw materials for the production of glass formulas, of the above disclosed nature, in which the pre-reacted batches are greatly stable, melt faster and better than the typical batches and allow an increase in the production rate.
it is a further main object of the present invention, to provide a method for preparing pre-reacted batches of raw materials for the production of glass formulas, of the above disclosed nature, which allows the possibility of reducing environmental emissions, increasing the furnace life and/or reducing the size of the furnace for previously equal throughputs.
These and other objects and advantages of the method for preparing pre-reacted batches of raw materials for the production of glass formulas, of the present invention will become apparent from the following detailed description of the invention, provided as specific embodiments thereof.


REFERENCES:
patent: 3082102 (1963-03-01), Cole et al.
patent: 3726697 (1973-04-01), Mod et al.
patent: 3929439 (1975-12-01), Pierce
patent: 4142907 (1979-03-01), Manring et al.
patent: 4341566 (1982-07-01), Barrett et al.
patent: 4920080 (1990-04-01

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for preparing pre-reacted batches of raw materials... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for preparing pre-reacted batches of raw materials..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for preparing pre-reacted batches of raw materials... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2874055

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.