Organic compounds -- part of the class 532-570 series – Organic compounds – Halogen containing
Reexamination Certificate
2000-03-20
2002-08-27
Siegel, Alan (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Halogen containing
C570S257000
Reexamination Certificate
active
06441256
ABSTRACT:
The present invention relates to a process for the preparation of halohydrocarbons comprising at least 3 carbon atoms, by catalytic reaction between a haloalkane and a haloolefin.
The addition of a haloalkane to a haloolefin is a well-known reaction. However, it is sometimes difficult to control the reaction such that only one haloolefin molecule adds to a haloalkane molecule (formation of a 1:1 addition product or adduct).
It is generally accepted that a haloalkane/haloolefin molar ratio at least equal to 2 is required in order to obtain high selectivity of 1:1 addition products (see for example T. Asahara et al., Kogyo Kagaku Zasshi, 72 (1969), 1526-9; and M. Belbachir et al., Makromol. Chem., 185 (1984), 1583-95 and patent application PCT 95/04021). However, this excess of haloalkane reduces the voluminal production efficiency of the synthetic process and makes the separation of the reaction products difficult.
Moreover, it is common practice to use a solvent in order suitably to dissolve the catalyst and to increase the reaction yield, although, in doing so, the voluminal production efficiency of the process is also limited. Conventionally, nitrites are used for this purpose, in particular acetonitrile. Thus, patent application PCT 96/01797, which relates to a process for the preparation of fluorohydrocarbons (FHC) starting from chloro precursors, describes the preparation of 1,1,1,3,3-pentachloropropane by telomerization between tetrachloromethane (CCl
4
) and vinyl chloride (VC), in the presence of acetonitrile. This results in a low voluminal production efficiency (of about 0.1 mol/h.kg),even with a CCl
4
/VC ratio of 1.7. The presence of a nitrile is also envisaged in the process for the manufacture of a halohydrocarbon by reaction between a haloalkane and a haloalkene, described in patent application PCT 97/07083. In addition, all the examples relate to haloalkane/haloalkene molar ratios of 4 or more. The production efficiencies resulting therefrom are consequently low.
The invention is thus directed towards providing a process for the preparation of halohydrocarbons comprising at least 3 carbon atoms, which no longer has the drawbacks of the known processes, in particular a process in which the 1:1 addition product is obtained with high voluminal selectivity and production efficiency, without diluting the reaction medium, which also makes the subsequent steps for separating the reaction products easier.
Consequently, the present invention relates to a process for the preparation of halohydrocarbons comprising at least 3 carbon atoms, by catalytic reaction, in the substantial absence of nitrile, between a haloalkane and a haloolefin in a haloalkane/haloolefin molar ratio of less than 2.
The process according to the invention can be carried out in a continuous or batchwise manner. It is understood that the molar ratios between the reactants are expressed, in a batchwise process, between the total amounts of reactants used, and, in a continuous process, between the stationary amounts of reactants present in the reactor.
According to the present invention, the molar ratio between the haloalkane and the haloolefin is less than 2. This ratio is generally greater than or equal to 0.7. Advantageously, this ratio is greater than or equal to 0.8. Preferably, it is greater than or equal to 1. Excellent results are obtained when this ratio is at least 1.2. The reason for this is that it has been observed, surprisingly, in the process of the invention, that it is possible to work with a ratio between the haloalkane and the olefin of close to the stoichiometry without appreciably affecting the selectivity.
The process according to the invention is carried out in the substantial absence of organic compounds having a nitrile (C≡N) group. The term substantial absence is understood to mean a weight content, relative to the entire reaction mixture, of less than 2%, preferably of less than 1%, in a particularly preferred manner of less than 0.1%. More particularly, the process according to the invention is carried out in the substantial absence of acetonitrile.
The haloalkanes used in the process according to the present invention are generally saturated organic compounds. They preferably have from 1 to 3 carbon atoms and preferably at least 2 chlorine atoms. They can also comprise other constituents, such as other halogen atoms, alkyl groups or haloalkyl groups. As examples of haloalkanes according to the present invention, mention may be made of dichloromethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane and 1,1,1-trichloro-2,2,2-trifluoroethane. Carbon tetrachloride is most particularly preferred.
The haloolefins used in the process according to the present invention are generally derivatives of a haloethene or of a halopropene, and preferably correspond to the formula
with Y═H or Cl, X═Cl or F and R═H, Cl, F or CH
3
. Among these compounds, those in which Y═H, X═Cl and R═H or CH
3
are preferred.
The halohydrocarbons obtained according to the process of the present invention generally belong to the family of chloropropanes, chlorobutanes or chloropentanes. The carbon atoms in the said chloropropanes, chlorobutanes and chloropentanes can also be substituted with other functional groups, such as other halogen atoms (for instance bromine or iodine atoms), alkyl groups or haloalkyl groups, nitrile (C≡N) groups or carboxylic acid (COOH) groups. Chloropropanes and chlorobutanes which are not substituted with other functional groups are preferred.
Preferably, the halohydrocarbons obtained according to the process of the present invention correspond to the general formula C
n
H
(2n+2)−p
Cl
p
in which n is an integer and has the values 3 or 4 and p is an integer which has the values 3 to 7. Examples of compounds obtained according to the process of the present invention are 1,1,1,3,3-pentachloropropane, 1,1,1,3,3-pentachlorobutane, 1,1,1,3-tetrachloropropane, 1,1,3,3-tetrachlorobutane, 1,1,1,3,3,3-hexachloropropane and 1,1-dichloro-2-trichloromethylpropane. Among these compounds, 1,1,1,3,3-pentachloropropane, 1,1,1,3,3-pentachlorobutane, 1,1,1,3,3,3-hexachloropropane and 1,1-dichloro-2-trichloromethylpropane are preferred. 1,1,1,3,3-Pentachlorobutane and 1,1,1,3,3-pentachloropropane are most particularly preferred.
The halohydrocarbons obtained according to the process of the invention are precursors of the corresponding fluoro analogues, which can readily be obtained by treatment with hydrogen fluoride in the presence of a catalyst such as an antimony salt, a titanium salt, a tantalum salt or a tin salt.
The catalytic system used in the present invention preferably comprises at least one copper compound. Advantageously, it is a copper (II) compound. In a particularly preferred manner, this Cu(II) compound is chosen from copper (II) chloride, copper (II) hydroxychloride, copper (II) acetylacetonate and copper (II) hexafluoroacetylacetonate, and mixtures thereof. Excellent results have been obtained with copper (II) hexafluoroacetylacetonate.
The molar ratio between the Cu(II) compound and the olefin is usually greater than or equal to 0.0001. Advantageously, it is greater than or equal to 0.001. Preferably, it is greater than or equal to 0.005. The molar ratio between the Cu(II) compound and the olefin is usually less than or equal to 1. Advantageously, it is less than or equal to 0.5. Preferably, it is less than or equal to 0.1.
The catalytic system used in the present invention preferably comprises a cocatalyst, in particular an amine, an amide or a trialkylphosphine oxide. As amides which can be used as cocatalyst, mention may be made of N-methylpyrrolidone and N,N-dimethylformamide. As trialkylphosphine oxides which can be used as cocatalyst, mention may be made of the compounds of formula (R
1
R
2
R
3
)PO, in which R
1
, R
2
and R
3
represent identical or different, preferably linear, C3-C10 alkyl groups. Tri(n-butyl)phosphine oxide, tri(n-hexyl)phosphine oxide, tri(n-octyl)phosphine oxide, n-octyldi(n-hexyl)phosphin
Janssens Francine
Mathieu Véronique
Connolly Bove & Lodge & Hutz LLP
Siegel Alan
Solvay ( Societe Anonyme)
LandOfFree
Method for preparing of halogenated hydrocarbons does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for preparing of halogenated hydrocarbons, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for preparing of halogenated hydrocarbons will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2877937