Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
1999-04-16
2001-04-03
Cain, Edward J. (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C524S556000
Reexamination Certificate
active
06211273
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for the preparation of nanoparticles formed from a polymerised methylidene malonate compound, said nanoparticles, optionally containing one or more biologically active molecules, as well as to pharmaceutical compositions containing them.
“Nanoparticles” is understood as meaning sub-micron particles having a diameter of less than about 500 nanometres. Nanoparticles formed by emulsion polymerisation of an alkyl cyanoacrylate are described in the EP 0 007 895 patent. The method used in the preparation of these alkyl cyanoacrylate particles relies on the (anionic) polymerisation of the monomer which takes place spontaneously and in an aqueous medium. The preparation which follows the same principle (anionic emulsion polymerisation) of nanoparticles constituted of a methylidene malonate polymer is described notably in F. Lescure et al, Pharm. Res., 1994.11L 1270-1276. These monomers, whose preparation is described in the EP 0 283 364 patent, have a structure close to that of the cyanoacrylates but the nitrile function of the latter is replaced with an ester or an ester ester. Like the cyanoacrylates, they polymerise in the cold in an aqueous medium and can be biodegradable.
However, the methylidene malonate nanoparticles thus obtained possess certain drawbacks.
In fact, the emulsion polymerisation of methylidene malonates in the form of nanoparticles leads, in aqueous phase and at slightly acid pH, to the formation of oligomers, mainly of the trimer or tetramer type, which are highly biodegradable.
These molecular species are partially hydrosoluble, such that the dispersion of these nanoparticles in an aqueous medium leads to their solubilisation and to the rapid loss of the particle structure (P. Breton et al., Eur. J. Pharm. Biopharm., 1996, 47, 95-103). When a biologically active molecule is associated with the methylidene malonate nanoparticles, is therefore possible for the molecule to be released very rapidly after the administration, following the effect of dilution in the circulatory current which brings about the rapid solubilisation of the oligomers which form the particle matrix, before eventually arriving at the site of action of the active principle.
Certain experiments have shown that the polymerisation at basic pH enabled the formation of polymers of higher molecular masses while maintaining the size of the nanoparticles. However, such syntheses are characterised by:
the impossibility of obtaining polymers of Mw<10000, and a fortiori Mw<8000, constituting individualised nanoparticles without forming aggregates and without the significant presence of oligomeric species.
the impossibility of constituting polymers of Mw>20000 and a fortiori of higher Mw, at high pH (pH>7) without the inevitable formation of aggregates which render the intravascular administration of these preparations impossible.
“Mw” is understood as meaning the mass average molecular mass (or average molecular mass) defined as: Mw=&Sgr;ni. Mi
2
/&Sgr;ni. Mi and Mp means the molecular mass of the quantitatively major species.
In the rest of the description, the molecular mass is expressed in polystyrene equivalents (Ep).
This preparative method is therefore not suitable if it is desired to prepare methylidene malonate nanoparticles constituted of:
polymers of average molecular mass between about 5000 and 10000, notably about 8000,
polymers of average molecular mass greater than 20000, without forming aggregates.
SUMMARY OF THE INVENTION
The present invention therefore consists of the preparation of methylidene malonate nanoparticles having a diameter of less than 500 nm, in particular 100 to 500 nm, formed from homogeneous molecular species of wide-ranging masses (Mw between about 2000 and 80000). The principle consists in dissolving the monomer in a water-miscible aprotic organic phase but which, under the conditions of preparation of the nanoparticles, forms, with the aqueous polymerisation medium, a non-solvent mixture of the polymer formed.
“Aprotic organic phase” or “aprotic organic solvent”, is understood as meaning an organic phase or a solvent without labile proton which is capable of initiating an anion.
DETAILED DESCRIPTION OF THE INVENTION
The advantages of this preparative method according to the invention are numerous:
it enables a more homogeneous dispersion of the monomer in the polymerisation medium,
it makes use of non-chlorinated solvents which are easy to evaporate since they are volatile,
it prevents the formation of polymer aggregates,
it gives rise to high polymerisation yields
it enables the constitution of polymers of homogeneous wide-ranging molecular mass (Mw about 2000 to 100000, notably about 2000 to 80000) in forming nanoparticles having a diameter of less than 500 nm.
Furthermore, the method enables the use of dispersing agents such as non-ionic surfactants or colloid protecting polymers, which leads to particles having flexible surface properties.
Finally, the molecular mass of the oligomers/polymers which form the nanoparticles according to the invention can be perfectly mastered by adjusting the following preparative conditions:
the monomer concentration in the organic phase,
the pH and the molarity of the polymerisation medium,
the nature and the concentration of the dispersing agent,
the volume ratio of the aqueous phase (polymerisation medium)/organic phase,
the mode of introduction of the organic mixture in the aqueous phase.
In a 1
st
aspect therefore, the invention relates to a method for the preparation of nanoparticles formed from a random polymer of at least one compound of formula (I)
in which
A represents a
group or a
group;
R
1
and R
2
, identical or different, represent a linear or branched C
1
-C
6
alkyl group;
n=1, 2, 3, 4 or 5;
characterised in that the monomer(s) is (are), before the polymerisation. dissolved in a water-miscible aprotic organic solvent forming, with the polymerisation medium, a non-solvent mixture of the polymer formed.
In an advantageous aspect, the invention relates to a method for the preparation of nanoparticles formed from a polymer of a compound of formula (I)
in which
A represents a
group or a
group;
R
1
and R
2
, identical or different, represent a linear or branched C
1
-C
6
alkyl group; n=1, 2, 3, 4 or 5;
characterised in that before the polymerisation, the monomer is dissolved in a water-miscible aprotic organic solvent forming, with the polymerisation medium, a non-solvent mixture of the polymer formed.
According to a particular aspect, the method according to the invention enables the preparation of nanoparticles having a diameter of less than 500 nm, preferably between 100 and 500 nm, and an average molecular mass (Mw) between about 1000 and 100000, notably between about 1000 and 80000, in particular between about 2000 and 80000, preferably between about 8000 and 80000.
In particular, the method according to the invention comprises the steps consisting in:
preparing a solution of at least one compound of formula (I) in a water-miscible aprotic organic solvent.
adding, with stirring, this organic phase to an aqueous polymerisation medium at a pH between 4.5 and 10,
recovering the nanoparticles thus obtained after homogenisation of the mixture and evaporating the organic solvent in vacuo.
The aqueous polymerisation medium can also be added to the organic phase which contains the monomer dissolved beforehand, and according to another aspect, the method according to the invention comprises the steps consisting in:
preparing a solution of at least one compound of formula (1) in a water-miscible aprotic organic solvent,
adding, with stirring, to this organic phase an aqueous polymerisation medium at a pH between 4.5 and 10,
recovering the nanoparticles thus obtained after homogenisation of the mixture and evaporating the organic solvent in vacuo.
As illustrated later on in the Examples, the pH of the polymerisation medium is selected as a function of the molecular mass of the polymer th
Breton Pascal
Bru-Magniez Nicole
Couvreur Patrick
Guillon Xavier
Lescure François
Cain Edward J.
Dennison, Scheiner Schultz & Wakeman
Virsol
LandOfFree
Method for preparing malonate methylidene nanoparticles,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for preparing malonate methylidene nanoparticles,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for preparing malonate methylidene nanoparticles,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2463821