Method for preparing and screening catalysts

Chemistry: analytical and immunological testing – Testing of catalyst

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007200, C435S091500, C435S091500, C435S091500, C435S091500, C436S501000, C436S518000, C436S082000, C436S083000, C436S084000, C436S148000, C436S149000, C502S180000, C502S181000, C502S182000, C502S183000, C502S184000, C502S185000, C427S249100

Reexamination Certificate

active

06689613

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is related to a method for preparing and screening catalysts. In particular, the present invention is related to a combinatorial method for preparing and screening catalysts.
Combinatorial methods have been used extensively in the pharmaceutical industry. These methods can be an efficient and rapid way to synthesize and screen numerous different substances on a microscale. Combinatorial methods represent a systematic way to screen for potential drugs, catalysts and materials. Due to the miniaturization of the reaction with combinatorial chemistry, there are typically problems in translating reaction conditions and parameters from a microscale reaction to a corresponding macroscale reaction.
Heterogeneous catalysts have been found to be particularly useful in solid state reactions. In particular, metal alloys and elemental metals are used as heterogeneous catalysts to synthesize a variety of materials. However, most metal alloys and elemental metals are prone to oxidation. Thus, methods used to synthesize catalysts from metal alloys and elemental metals must be practiced in a controlled environment.
A multitude of combinations of metal alloys and elemental metals may be used to form catalysts. Therefore, the study of potential catalysts in the vast array of metal alloys and elemental metals may be a slow and tedious process. Due to the inefficiency of typical methods, new methods to discover catalysts are constantly being sought.
BRIEF SUMMARY OF THE INVENTION
The present invention provides a combinatorial method for the preparation and screening of catalysts. In an exemplary embodiment, the method includes the steps of:
(I) providing a library of elemental catalysts;
(II) reacting the catalysts with a carbon source to form product directly on the catalyst; and
(III) screening the products to evaluate the catalysts.
DETAILED DESCRIPTION OF THE INVENTION
A combinatorial method has been discovered which enables rapid synthesis and screening of catalysts. The combinatorial method for the discovery of catalysts is a microscale reaction. The miniaturization of the reaction enables virtually any number of different catalysts to be screened at once making it an efficient method for discovery of new catalysts. The small scale of the reaction can have environmental benefits due to the amount of chemicals used which is usually in units of micrograms. It is both a faster and a cleaner way to do experiments in search of catalysts. “Catalysts” as used herein refer to elemental metals, metal alloys, or combinations thereof which are effective at catalytic levels for converting a reactive substrate to a product. In particular, the combinatorial method is used for discovering catalysts used for making carbon fibrils by a heterogeneously catalyzed process.
Carbon fibrils are microscopic fibers of carbon typically having a diameter in a range between about 1 nanometer and about 500 nanometers. In particular, it is preferable to synthesize carbon fibrils with a diameter in a range between about 10 nanometers and about 50 nanometers. The aspect ratio of length of the carbon fibril to the diameter of the carbon fibril is typically greater than about 100.
Combinatorial methods used for synthesizing catalysts for carbon fibril formation include a thin film catalysts library and a powder catalysts library. “Library” as used herein refers to two or more different catalysts placed on a substrate. The catalysts may be deposited on the substrate sequentially or preferably, simultaneously. “Substrate” as used herein refers to any material which supports a large collection of catalysts. There is typically a minimum interaction between the supported catalysts and substrate material during chemical reaction or synthesis. However, certain substrates which have been found to be catalytic substances may have a synergistic effect on the production of carbon fibrils. Typical substrates include ceramics, for example, alumina; glass; metals, for example, aluminum, stainless steel, copper, silver, gold, platinum, and brass; and single crystals, for example, quartz, magnesium oxide, silicon, sapphire, and lanthanum aluminate.
In a preferred embodiment, a thin film catalysts library is produced using a multiple gun sputtering deposition system. The multiple gun sputtering deposition system contains elemental metal or metal alloy source placed in each gun cavity. An electrical discharge can be created at each source by applying radio frequency (RF) or direct current (DC) power in a range between about 10 Watts and about 1,000 Watts through the sputter gun, which heats the elemental metal or metal alloy to form a metal plasma vapor. The metal vapor from the sputter gun is deposited onto the counter-facing substrate. The rate of the material deposition is dependent on the level of power input. The amount of material deposited can be altered by changing the amount of time the sputter gun is powered. By coupling thin film deposition from different sputter guns with different masking patterns from an array of deposition masks, a matrix library of thin film catalysts is created. Due to the multiplicity of the number of guns and hence, elemental metals and metal alloys which can be used, the possible compositions and stoichiometry of metals which are deposited on the substrate are countless thus allowing for exploration of a vast experimental space. With multiple sputtering guns, any combination of metals can be deposited on a substrate to form a thin film catalysts library.
In various embodiments, the thin film catalysts library is built with an in-vacuum feed-in system. This enables the metal alloy library to be made without breaking the vacuum to change sources and masks for the next deposition, which keeps the metals in an atmospherically controlled environment. In particular, the in-vacuum feed-in system is filled with a gas, for example, argon, helium, nitrogen, hydrogen, and mixtures thereof. The gas in the thin film catalysts library is hereinafter referred to as “sputtering gas”. The in-vacuum feed-in system increases the speed in the generation of libraries, and also prevents the formation of metal oxides from elemental metals and alloys which are sensitive to oxygen. Typically, the prevention of oxidation of the elemental metals and alloys is a concern but the in-vacuum feed-in system substantially inhibits the oxidation of metals and metal alloys.
Once the metal vapors are deposited on the substrate, the thin film catalysts library is typically thermally annealed. The library is heated to a temperature in a range between about 200° C. and about 1100° C., and preferably, to a temperature in a range between about 600° C. and about 800° C. The library is also typically in a non-organic gas environment to substantially prevent the oxidation of the elemental metals or metal alloys. Examples of typical gases include argon, helium, nitrogen, hydrogen and mixtures thereof. Although the invention is not dependent on theory, it is believed that the temperature and atmospheric conditions promote the interdiffusion of the combined metals to form catalysts.
An alternative manner for creating a catalysts library is through the use of a multiple channel liquid dispensing system. Each of an array of liquid dispensers can be individually controlled and programmed to dispense a liquid material. In preferred embodiments, the liquid dispensers are each filled with a soluble metal precursor such as a nitrate, acetate, or other aqueous soluble metal salt compound. An elemental metal, metal alloy or mixture thereof is carried in a soluble precursor. Once the soluble precursor or combination of soluble precursors comprising the elemental metal, metal alloy or combination thereof is deposited on the substrate as a liquid, the library is typically dried, calcined in air, and annealed in nitrogen, argon, helium, hydrogen, or combinations thereof to form an oxide-containing powder catalyst library. To synthesize metal or alloy materials from such oxide-containing powders, reducing (for exampl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for preparing and screening catalysts does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for preparing and screening catalysts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for preparing and screening catalysts will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3353422

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.