Method for photoselective seeding and metallization of...

Stock material or miscellaneous articles – Structurally defined web or sheet – Discontinuous or differential coating – impregnation or bond

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S901000, C430S311000, C430S315000, C430S417000, C156S922000, C439S055000

Reexamination Certificate

active

06210781

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention pertains to a method for selectively metallizing, e.g., forming an electrical circuit on, a three-dimensional surface such as a cone connector used in a multi-layer circuit board, which method does not require the use of a photoresist.
2. Description of the Related Art
A substrate, such as a printed circuit board substrate, is conventionally selectively metallized, e.g., an electrical circuit is formed on the substrate, by initially forming a patterned seeding layer of, for example, palladium (Pd) on a surface of the substrate. The resulting substrate is then immersed in a metal plating bath, such as an electroless copper plating bath, where the corresponding metal, e.g., copper, is selectively deposited from solution just onto the patterned seeding layer. The selectively deposited copper then constitutes the desired selective metallization, e.g., the desired electrical circuit.
When forming the patterned seeding layer, either a subtractive or an additive procedure is used. In the subtractive procedure, an unpatterned seeding layer of, for example, palladium is initially formed on the substrate surface of interest. This is achieved by, for example, sputtering the seed metal onto the substrate surface. Alternatively, the seed metal is deposited from solution. For example, an unpatterned layer of palladium is readily deposited onto the substrate surface from a solution containing a palladium salt and tin chloride. Once the seed metal is deposited, a layer of photoresist is deposited on the seeding layer, exposed through a mask bearing the pattern of interest and developed. The underlying seeding layer is then etched, e.g., chemically etched, while using the patterned photoresist as an etch mask. Thereafter, the photoresist is chemically stripped, leaving just the patterned seeding layer.
In the additive procedure, a layer of photoresist is initially deposited onto the substrate surface of interest, exposed through a mask and developed. A metal seed, such as palladium, is then deposited onto the substrate surface of interest, while using the patterned photoresist layer as a deposition mask. The patterned photoresist layer (as well as the metal seed deposited onto the photoresist, per se) is then chemically stripped, leaving just the metal seed deposited into the openings in the patterned photoresist layer, which constitutes the patterned seeding layer.
As is known, the use of photoresists and the corresponding chemical developers and strippers is environmentally undesirable. Consequently, attempts have been made to develop methods for forming patterned seeding layers which do not rely on the use of photoresists. Moreover, the foregoing methods do not work well for three-dimensional polymeric materials (that is, materials in a shape other than a flat surface).
One method for forming a patterned seeding layer which does not rely on the use of a photoresist is described by Thomas H. Baum et al in “Photoselective Catalysis of Electroless Copper Solutions for the Formation of Adherent Copper Films onto Polyimide,” Chem. Mater., Vol. 3, No.4, 1991, pp. 714-720. According to this journal article, a patterned seeding layer of palladium is formed on a surface of a polyimide substrate by immersing the substrate surface in an aqueous seeding solution. This solution includes hydrated forms of potassium trioxalatoferrate (K
3
Fe (C
2
O
4
)
3
) and tetraamine Anne palladium chloride (Pd(NH
3
)
4
CI
2
). The resulting layer of seeding solution on the substrate surface is then irradiated with UV light through a mask, to photo-selectively deposit palladium metal from the UV-irradiated regions of the solution onto the substrate surface. As a result, a patterned. palladium seeding layer is formed without the use of a photoresist. (This patterned seeding layer remains in contact with, and surrounded by, the unexposed regions of the layer of seeding solution.)
According to the Baum et al journal article, immersing a polyimide substrate bearing a patterned palladium seeding layer, produced as described above, in an electroless copper plating bath having a pH of 12 results in deposition of copper just onto the palladium. However, as discussed below, it has been found by the present inventors that subsequent immersion of a second, third, fourth, etc., such polyimide substrate into the same electroless copper plating bath quickly results is serious difficulties. Moreover, these very same difficulties arise when the above-described method of photoselective palladium deposition is applied to other organic substrates, such as the epoxy resin/fiberglass substrates and fluoropolymer-containing substrates used in printed circuit board manufacture. Further, these same difficulties arise when the above-described method of photoselective palladium deposition is applied to inorganic, ceramic substrates, such as alumina substrates, aluminum nitride substrates and silicon nitride substrates.
SUMMARY OF THE INVENTION
The invention involves the finding by the present inventors that when a patterned seeding layer, e.g., a patterned palladium seeding layer, is formed on a three-dimensional substrate, such as a polyimide substrate, a printed circuit board substrate or a ceramic substrate, using the method described in the Baum et al journal article, and the substrate is then immersed in a metal plating bath, e.g., an electroless copper plating bath, to form a corresponding electrical circuit, that metal is often deposited not just onto the patterned seeding layer. Rather, metal is also deposited on the unexposed regions of the photoactive layer of seeding solution remaining on the substrate surface, and the frequency of this unwanted metal deposition increases as the number of such substrates immersed in the same metal plating bath increases. As a consequence, the electrical circuit formed on the surface of such a substrate exhibits undesirable short circuits. Moreover, it has been found that the metal plating bath into which the substrates are immersed becomes poisoned by the unexposed seeding solution and unstable.
The invention also involves the finding that the above-described problems of unwanted metal deposition and bath instability are avoided by removing the unexposed regions of the photoactive layer of seeding solution remaining on the substrate surface, leaving just the patterned seeding layer, before immersing the substrate in a corresponding metal plating bath. This removal is readily achieved by subjecting the exposed and unexposed regions of the photoactive layer of seeding solution to an alkaline solution such as, for example, an aqueous sodium hydroxide solution. During this removal process, essentially no metal is deposited on either the patterned seeding layer or the unexposed regions of the layer of seeding solution.
Significantly, the added step of subjecting the exposed and unexposed regions of the photoactive layer of seeding solution to the above-described alkaline solution achieves an unexpected, advantageous result. That is, if the layer of seeding solution is formed using, for example, potassium trioxalatoferrate and tetraamine palladium chloride, then subjecting the exposed and unexposed regions of the photoactive layer of seeding solution to the above-described alkaline solution not only serves to remove the unexposed regions, but also serves to form an oxidized species of iron, e.g., iron oxyhydroxide (FeOOH), gel around the seed metal, per se. This gel prevents oxidation of the seed metal, and thus permits a substrate bearing a patterned seeding layer to be stored for months before immersion in a metal plating bath. Moreover, this gel quickly expands and becomes very permeable in the metal plating bath when the substrate is immersed in the bath, thereby permitting metal to be readily deposited onto the patterned seeding layer.
The invention further involves the finding that, in addition to patterned palladium seeding layers, patterned seeding layers of, for example, platinum (Pt), gold (Au) and silver (Ag) are also readily

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for photoselective seeding and metallization of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for photoselective seeding and metallization of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for photoselective seeding and metallization of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2448380

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.