Method for organic reactions

Chemistry: electrical and wave energy – Processes and products – Processes of treating materials by wave energy

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

20415769, C07F 100

Patent

active

061361577

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

The present invention relates to a method for transition metal catalyzed organic reactions comprising a heating step. More precisely, the invention relates to organic reactions catalyzed with palladium, except Pd/C, under microwave energy. One type of organic reactions concerned are coupling reactions, in which new carbon-carbon bonds are formed.


BACKGROUND OF THE INVENTION

Transition metal catalyzed reactions have played a role in organic synthesis for a very long time. Twenty five years ago the first examples of the use of palladium as a catalyst for coupling reactions were disclosed. Since then enormous efforts have been devoted to extend the scope of palladium-catalyzed reactions. Among these, the Heck reaction.sup.1, the Stille reaction.sup.2 and the Suzuki reaction.sup.3 probably represent the most applied and most reliable reactions considering the reactions delivering new carbon-carbon bond formation. These reactions allow the presence of a wide variety of substituents attached to the reactants and merit special attention due to the simplicity of the experimental procedures. The Heck reaction, which is a vinylic substitution reaction, is most frequently conducted with olefines and organo halides or triflates as reactants. Couplings of organotin reagents with organo halides or triflates are named Stille reactions. The related couplings of organoboronic acids and/or organoboronic esters with organo halides or triflates are named Suzuki reactions. These reactions are of utmost importance in organic synthesis and have all found use in Combinatorial Chemistry (CC), sometimes as key reactions in the creation of chemical libraries.sup.4. Combinatorial Chemistry is conducted either in solution or preferably on solid phase. Combinatorial Chemistry combined with High Throughput Screening (HTS) has revolutionized the Drug Discovery Programmes in the pharmaceutical industry during the last few years.sup.5.
In Combinatorial Chemistry the reaction time factor is of importance. Rapid reactions are desired. The long reaction times often required in the palladium-catalyzed coupling reactions presented above is therefore in this respect a severe limitation. While some combinations of reactants allow fast conversions, and efficient use in Combinatorial Chemistry have been demonstrated, the majority of reactant combinations require unacceptable reaction times for completion. With regard to the palladium-catalyzed Heck, Stille or Suzuki reactions, attempted enhancement of the conversion rate by increasing the reaction temperature to over 130-150.degree. C. most often leads to collapse of the catalytic system before a full conversion is achieved. Product decomposition is frequently observed and a mixture of undesired side products are formed.


PRIOR ART

Microwave assisted transition-metal catalyzed reactions of double bonds, including hydrogenation, catalyzed by RaNi or Pd/C,.sup.6 and addition of chloronated hydrocarbons to double bonds, catalyzed by Cul.sup.7 have been reported.


SUMMARY OF THE INVENTION

The present invention provides a method for palladium,except Pd/C, catalyzed organic reactions comprising a heating step performed with microwave energy.
In a preferred embodiment, the reactions are coupling reactions such as the Heck, Stille and Suzuki reactions.
Such reactions can be depicted as follows: vinyl, acetylenyl, alkyl, allyl, benzyl, acyl, benzoyl, or mono or poly substituted aryl, heteroaryl, vinyl, acetylenyl, alkyl, allyl, benzyl, or benzoyl; sulfonylhalide, perfluoroalkylsulfonate, arylphosphate, alkylphosphate, diarylarsine, diarylphosphine, diarylstibine, aryliodonium or diazonium salt; substituted; or heteroaryl; allyl, benzyl or mono or poly substituted aryl, heteroaryl, vinyl, acetylenyl, alkyl, allyl, benzyl;
The reactions may be performed on a solid support, wherein Org.sup.1, Org.sup.2 or H-olefin are preferably attached to a solid support via a linker.
Furthermore, the present invention provides for use of palladium-catalyzed coupling reactions in combinatorial

REFERENCES:
patent: 4574038 (1986-03-01), Wan
patent: 4933461 (1990-06-01), Mills
Tetrahedron Letters, vol. 33, No. 15, 1992, no month available. Frantisek Adamek et al., "Microwave-Assisted Catalytic Addition of Halocompounds to Alkenes" pp. 2039-2042.
Synlett, vol. 8, Aug. 1993, Ajay K. Bose et al., "Simplified Rapid Hydrogenation Under Microwave Irradiation: Selective Transformations of B-Lactams1" p. 575-p. 576.
R.F. Heck, Palladium-Catalyzed Vinylation of Organic Halides, Organic Reactions, Ch. 2, 1982, 27, pp. 345-363.
Trost, B.M. and Verhoeven, T.R., Organopalladium Compounds in Organic Systhesis, Comprehensive Organometallic Chemistry; Wilkinson, G.; Stone, F.G.A.; Abel, E.W. Eds.; Pergamon Press; Oxford 1982, vol. 8, pp. 854-874.
Heck, R.F., Palladium Reagents in Organic Synthesis; Academic Press; London, 1985; pp. 276-290.
Heck, R.F. Vinyl Substitutions With Organopalladium Intermediates, Comprehensive Organic Synthesis; Trost, B.M.; Flemming, I. Eds.; Pergamon Press; Oxford 1991; vol. 4, pp. 833-863.
de Merijere, A.; Meyer, F.E.; Fine Feathers Make Fine Birds: The Heck Reaction in Modern Garb; Agnew Chem. Int. Ed. Engl. 1994, 33, pp. 2379-2411.
Cabri, W., CAndiani, I; Recent Developments and New Perspectives in the Heck Reaction; Acc. Chem. Res. 1995, 28, pp. 2-7.
Tsuji, J., Catalytic Reactions With Pd(O) and Pd(II); Paladium Reagents and Catalysts: Innovations in Organic Chemistry; John Wiley & Sons, Chichester 1995; pp. 125-149.
Daves, G.D. Jr.; Hallberg, A.; 1,2-Additions to Heteroatom-Substituted Olefins by Organopalladium Reagents; Chem. Rev. 1989,89; pp. 1433-1445.
Stille, J.K.; The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents With Organic Electrophiles; Angew. Chem. Int. Ed. Engl. 1986, 25, pp. 508-524.
Ritter, K.; Synthetic Transformations of Vinyl and Aryl Triflates: Synthesis 1993, pp. 735-762.
Tsuji, J., Palladium Reagents and Catalysts; Innovations in Organic Chemistry; John Wiley & Sons, Chichester 1995; pp. 228-239.
Miyaura, N.; Suzuki, A.; Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds; Chem Rev. 1995, vol. 95, No. 7, pp. 2457-2483.
Martin, A.R.; Yang, Y.; Palladium-Catalyzed Cross-Coupling Reactions of Organoboronic Acids With Organic Electrophiles; Acta Chemica Scandinavica vol. 47, 1993, pp. 221-230.
Frenette, R.; Friesen, R.W.; Biaryl Synthesis Via Suzuki Coupling on a Solid Support; Tetrahedron Letters, vol. 35, No. 49, 1994, pp. 9177-9180.
Backes, B.J.; Ellman, J.A.; Carbon-Carbon Bond-Forming Methods on Solid Support, Utilization of Kenner's "Safety-Catch" Linker; J. Am. Chem. Soc. 1994, vol. 116, pp. 11171-11172.
Han, Y.; Walker, S.D.; Young, R.N.; Silicon Directed ipsoSubstitution of Polymer Bound Arylsilanes: Preparation of Biaryls via The Suzuki Cross-Coupling Reaction.sup.1 ; Tetrahedron Letters, vol. 37, No. 16, 1996, pp. 2703-2706.
Young, J.K.; Nelson, J.C.; Moore, J.S.; Synthesis of Sequence Specific Phenylacetylene Oligomers on an Insoluble Solid Support; J.Am. Chem. Soc. vol. 116, 1994, pp. 10841-10842.
Yu, K.L.; Deshpande, M.S.; Vyas, D.; Heck Reactions in Solid Phase Synthesis; Tetrahedron Letters, vol. 35, No. 48, 1994, pp. 8919-8922.
Hiroshige, M.; Hauske, J.R.; Zhou, P.; Formation of C-C Bond in Solid Phase Synthesis Using the Heck Reaction: Tetrahedron Letters, vol. 36, No. 26, 1995, pp. 4567-4570.
Goff D.A.; Zuckermann, R.N.; Solid-Phase Synthesis of Highly Substituted Peptoid (1(2H)-Isoquinolinones; J. Org. Chem. vol. 60, 1995, pp. 5748-5749.
Deshpande, M.S.; Formation of Carbon-Carbon Bond on Solid Support: Application of the Stille Reaction; Tetrahedron Letters, vol. 35. No. 31, 1994, pp. 5613-5614.
Forman, F.W.; Sucholeiki, I.; Solid-Phase Synthesis of Biaryls Via the Stille Reaction; J. Org. Chem., vol. 60, 1995, pp. 523-528.
Hermkens, P.H.H.; Ottenheijm, H.C.J.; Rees, D.; Tetrahedron Report No. 394; Tetrahedron, vol. 52, No. 13, 1996, pp. 4527-4554.
Fruchtel, J.S.; Jung, G.; Organic Chemistry on Solid Supports; Angnew. Chem. Int. Ed. Engl, vol. 35, 1996, pp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for organic reactions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for organic reactions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for organic reactions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1959870

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.