Method for optically determining the position of a movement...

Radiant energy – Photocells; circuits and apparatus – Optical or pre-photocell system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S2140PR, C250S231120, C385S036000, C385S140000

Reexamination Certificate

active

06614016

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for optically determining the position of a movement element with a light source and a light detector in which the characteristic of the light emitted by the light source changes relative to a position of the movement element and is registered by the light detector and used to calculate the position of the movement element. More specifically, the present invention relates to a method for optically determining the position of a movement element in a motor vehicle. The invention additionally relates to an optical sensor for implementing the method.
2. Description of the Related Art
A measurement method using a light source and light detector in which the characteristic of the light changes relative to a position of the movement element is used, for example, in the automobile sector to register rotation of a steering shaft in a motor vehicle and to use it to calculate a torsion torque. For this purpose, the light emitted by the light source falls successively through a first aperture stop connected to the movement element designed as a steering shaft and a second aperture stop connected to a reference point. After passing the second aperture stop, the light is registered by the light detector. An angular offset between the two aperture stops causes the light to be partly or completely shielded, depending on the position of the movement element. The light is registered by the light detector, for example, as a difference in brightness.
The aforementioned method is comparatively well suited to detect any relative offset between the movement element and the reference point during measurements for determining the position of the movement element. However, the sensor requires a large number of aperture stops or the measured values are inaccurate. In addition, a number of light detectors have to be provided depending on the maximum possible movement range of the movement element, which leads to a high manufacturing expenditure and to cumbersome handling.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a method for optically determining a position of a movement element using a light source and a light detector which improves the accuracy of the measured values over the prior art and which is easy to implement.
Another object of the present invention is to provide a device for implementing the inventive method.
A method for optically determining a position of a movement element according to the present invention includes the steps of introducing light from a light source into a measurement section that attenuates the light, attenuating the light by the measurement section in accordance with the position of the movement element, registering the attenuated light by a light detector, and inferring the position of the movement element from the attenuation of the light by a computing unit.
The inventive method permits an exact and stepless determination of the position of the movement element even under unfavorable physical conditions. Furthermore, the position is determined using only one light detector so that the measurement method is implemented with a low outlay. The requirement of additional aperture stops which intervene in the beam path of the light is obviated by the present invention. In addition, the measurement accuracy is independent of the maximum movement range of the movement element, so that even comparatively large adjustment ranges can be registered without difficulty. The method may be used in those applications in which an aggressive environment rules out the use of electrical components and in which a non-contacting measurement method is desired to avoid wear or influences of the measurement method on the movement element.
The measurement section may be flexibly or, resiliently deformable to achieve a change in the attenuation of the light in accordance with the position of the movement element. On the other hand, a preferred embodiment of the present invention includes initially introducing the light from the light source into an optical conductor, coupling out the light from the optical conductor in accordance with the position of the movement element and feeding the light to the light detector. In this case, a length of the path traced by the light in the optical conductor is changed by the movement element, thereby causing a different attenuation of the light that is used for determining the position. As a result, even a comparatively large movement range which may also have an desired spatial course, for example, can be implemented. The movement element may also be connected to the optical conductor such that the movement element permits the light to emerge only in a respectively current position of the optical conductor while the remaining region of the optical conductor is covered for preventing the light from emerging from the remaining region.
If a light source with a known light intensity is used, the position of the movement element may be inferred by the light intensity registered by the light detector. In a preferred embodiment, the position of a movement element may be optically determined by comparing the light emitted by the light source and the light registered by the light detector with each other and determining the position of the movement element from the differential value. Accordingly, different light sources may be used in the method, the light intensities of which do not have to be known at the start. In this embodiment, the light from an external light source or even the ambient brightness may be used for implementing the inventive measurement method.
In a further embodiment, the attenuation of the light is determined by the deviation of the brightness and color spectrum of the light emitted between the light source and the light registered by the light detector. In this embodiment, the accuracy of the measurement method is improved by the position of the movement element being inferred from both the brightness difference and the color difference. A deviation in the respectively determined values may be indicated to the user as a fault message in the event of an impermissible deviation.
According to the present invention, an optical sensor for determining the position of the movement element by a light source and a light detector to implement the above described method includes an optical conductor that is connectable to the light source and effects the attenuation of the light, and a light output coupler which moves in accordance with the actuating position of the movement element for transmitting the attenuated light to the light detector.
The determination of the position of the movement element is effected in a simple way from the increased attenuation of the light given an increase in the path which the light traces before being coupled out. The light output coupler may be moved along the optical conductor together with the movement element. In this case, even a large movement range of the movement element requires only one light detector. Accordingly, the sensor is simple to manufacture and requires little space. In addition, both the position of a movement element that is translationally displaced and one which is pivoted about an axis may be registered. In fact, the movement element may follow any desired spatial movement path.
In a preferred embodiment, the optical conductor has an annular or arcuate shape to determine the position of a movement element which is deflected about a shaft. Even small angular changes may be reliably registered using this configuration. The light output coupler may be moved, for example, along the optical conductor similar to a pointer flag by the movement element for coupling out the light reliably in accordance with the position of the movement element. The action of coupling the light out may be performed at any desired outer surface of the optical conductor so that the optical sensor is adaptable to the respectively provided installation position.
In a further embodiment of the prese

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for optically determining the position of a movement... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for optically determining the position of a movement..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for optically determining the position of a movement... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3008364

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.