Method for operating an internal combustion engine with...

Internal-combustion engines – Six-cycle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S568140

Reexamination Certificate

active

06564758

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a method for operating an internal combustion engine with variable gas exchange control times, particularly for rapidly reaching the operating temperature during cold starting, for the temporarily intensified generation of hot gas and/or for implementing a multistroke operating mode with an increased number of strokes per working cycle, the latter particularly in order to apportion the combustion process to a plurality of working strokes of a working cycle. The term “gas exchange control times” refers to the control times of the inlet and outlet valves, designated as gas exchange valves, of the combustion space or combustion spaces of the internal combustion engine.
BACKGROUND INFORMATION
The development of freely activatable gas exchange valves, i.e., of inlet and outlet valves, which can be placed into their open or closed position at variably predeterminable points in time during the various working strokes, as described, for example, in German Published Patent Application No. 195 01 495, has made it possible, for the purpose of achieving specific desired effects, to set unconventional gas exchange control times differing from those which are normally used during customary two-stroke or four-stroke operation.
One problem which can be tackled by this technique of variable gas exchange control times is that of reaching the operating temperature as rapidly as possible during a cold start, in order to keep the exhaust-gas emissions as low as possible during the warming-up phase and/or to make it possible, for use in the vehicle engine, to make a sufficient quantity of heat available for heating the vehicle. This is based on the notion, when the internal combustion engine is cold, of not converting the energy contained in the fuel into drive energy in an uncompromisingly optimum manner, but, instead, in particular periods of time, such as after a cold start, also to use it deliberately for heat generation, in order to make corresponding accessories, such as stationary heating appliances, superfluous. This should, of course, be accompanied by exhaust-gas emissions which are as low as possible.
A further requirement during the operation of many internal combustion engines is a temporarily intensified generation of hot gas, for example for the turbine of a coupled exhaust-gas turbocharger. In this application, it is, for example, expedient to improve the transient behavior of turbocharged engines, i.e., engines with an exhaust-gas turbocharger, at the transition from the part-load to the full-load operating mode, this transient behavior being designated as a so-called “turbohole” and being relatively poor, as compared with aspirating engines.
German Published Patent Application No. 1 034 925 describes a method for operating a piston internal combustion engine with an exhaust-gas turbine, in which it becomes possible to set variable gas exchange control times by an adjusting control which makes it possible, by an associated lever being actuated, to vary the angular position of a camshaft in relation to a crankshaft. When, starting from an instantaneous operating state, the drive power supplied by the internal combustion engine on an output shaft is to be reduced, an advanced adjustment of the outlet valves is performed by the adjusting control, in order to continue to feed essentially the same energy to the exhaust-gas turbine, so that it can be maintained in an operating range with high efficiency. In this internal combustion engine, the exhaust-gas turbine can be coupled to its output shaft serving, for example, for driving a motor vehicle or, together with a corresponding supercharger part, can form an exhaust-gas turbocharger. In both cases, there may be provision, particularly in the low rotational speed range, by the advanced adjustment of the outlet valves to feed a large amount of energy to the exhaust-gas turbine, so that the latter can generate a relatively high torque.
In order to achieve a part-load operating mode which is beneficial in terms of fuel consumption, the technique of so-called cylinder cut-off or fade-out is conventional, in which, in a predeterminable part of the successive working cycles, some of the plurality of combustion spaces of a multicylinder internal combustion engine are deliberately “cut out” or “faded out”, in that, contrary to normal operation, no fuel injection occurs, so that the cut-off cylinders merely “follow” passively. This arrangement is accompanied by suitable activation measures for the gas exchange valves. Operating methods of this type are described in German Published Patent Application No. 44 40 920, European Published Patent Application No. 0 703 357, German Published Patent Application No. 42 92 543 and U.S. Pat. No. 5,655,508.
It is an object of the present invention to provide an operating method, by which, utilizing the possibility for setting variable gas exchange control times, an internal combustion engine may be operated relatively favorably in terms of consumption and with low pollutant emission, precisely even in special operating situations, such as for warming up and for the intensified generation of hot gas.
SUMMARY
The above and other beneficial objects of the present invention are achieved by providing an operating method as described herein. The operating modes may be provided in corresponding operating situations for one and the same internal combustion engine, the possibility of having the capability of setting variable gas exchange control times being utilized. It is also possible, in any given internal combustion engine, to implement only one of these various operating modes, e.g., in combination with a conventional two-stroke or four-stroke operating mode, or to permit any desired choice of these operating modes for the internal combustion engine.
The method according to the present invention includes a direct exhaust-gas recirculation operating mode, in which a retarded adjustment of the outlet valve or outlet valves is performed, i.e., as compared with normal operation in which the outlet valve is opened only during a gas expulsion phase, it is closed, with a delay, only during a gas intake phase following the gas expulsion phase. As in all other operating modes according to the present invention, this arrangement may occur in each working cycle or only for a selectable part of the successive working cycles of one or more selectable combustion spaces, i.e., the respective operating mode may be set individually for each combustion space and each working cycle according to a predeterminable combustion-space and/or working-cycle pattern. As a result of this arrangement, part of the previously expelled hot exhaust gas is sucked directly back into the combustion space again. The hot exhaust-gas fraction heats the fresh-air quantity subsequently fed via the inlet valve, so that, overall, the discharge of heat to the combustion space walls increases. This operating mode is therefore particularly suitable, for example, for reaching the operating temperature more rapidly during a cold start.
In the direct exhaust-gas recirculation operating mode, the respective inlet valve may be opened, delayed by about the same delay time as the outlet valve in relation to normal operation, i.e., the opening action for the inlet valve then alternates in the conventional manner with the closing action for the outlet valve. This arrangement avoids an appreciable exchange of gas between the intake tract and the exhaust tract.
In the direct exhaust-gas recirculation operating mode, advanced adjustment of the outlet valve may be additionally provided, i.e., the outlet valve is not only closed later than normal, but is also opened earlier than normal, i.e., even before the commencement of the gas expulsion phase during a preceding combustion and expansion phase. The effect of this arrangement is that hot exhaust gas which is still under pressure expands into the outlet tract, so that less energy is converted into mechanical work, and therefore additional exhaust-gas heat occurs, which may

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for operating an internal combustion engine with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for operating an internal combustion engine with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for operating an internal combustion engine with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3042505

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.