Method for operating a postage meter and addressing machine

Data processing: financial – business practice – management – or co – Business processing using cryptography – Postage metering system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C705S408000

Reexamination Certificate

active

06438529

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a method for operating a postage meter and addressing machine of the type including steps for entering a postage value, steps for comparing a print image, and steps for starting and completing printing of the print image. The method is suited for a “closed” system, particularly for individual users of postage meter machines.
2. Description of the Prior Art
Conventionally, franking and addressing have been mainly implemented by separate machines. The franking imprint, which is usually to be applied to a filled envelope, requires a specific printing technology that is not suited for address printing. For applications wherein envelopes are to be both franked and addressed by machine, the use of two separately operating machines in the mail output processing is a considerable investment. Two machines also require corresponding placement areas as well as twice the maintenance outlay.
More recent postage meter machines utilize digitally operating printer units. For example, the T1000 and JetMail postage meter machines offered commercially by Francotyp-Postalia AG & Co. (Postalia, Inc. in the United States), are the first to use a thermal transfer printer and an ink jet printer, respectively. It is thus fundamentally possible also to print addresses on a filled letter, but only in the area of the franking stamp. The postal regulations of most countries prohibit printing address information at the same level on the envelope or package as the franking imprint. Printing in the address area of the envelope reserved for the address of the mail recipient using the same printhead as is used to print the franking imprint at its designated location on the envelope is not possible with such machines since the printing width of the printhead is inadequate to print at both locations.
Another obstacle for the implementation of franking imprints and address printing with the same print unit has hitherto been the requirement of the postal authorities for a specific color for the franking imprint (usually orange), often paired with a requirement for fluorescence. Franking imprints with such a color could not be copied true to the original on conventional color copiers. Until recently, this constituted a certain protection against the copying of franking imprints for illicit purposes. Due to progress that has been made in color copiers and color printers in the meantime, such a measure can no longer be considered a serious impediment to producing counterfeit, unpaid imprints.
In the context of letter distribution systems, moreover, there is a need for an optimally high-contrast color, specifically for the address printing, that should be automatically (machine) scannable with high dependability. The letter is controlled through the letter sorting system of the mail distribution centers on the basis of the scanned address data. The printing devices of conventional postage meter machines, however, only print their imprints with the postal orange color. The need for machine-readability in combination with high processing speed is met best by the color black.
Digital postage meter machines of the type described above are not absolutely secure. Future color copiers will be able to duplicate a franking imprint that can no longer be distinguished from an original imprint. Based on estimates, an annual loss of approximately $200 million is incurred by the United States Postal Service (USPS) due to fraud. The USPS has therefore compiled a specification catalog with requirements which must be met by the design of future postage meter machines (information-based indicia program IBIP) published on Jun. 13, 1996. It is proposed therein that certain data be cryptographically encoded and be printed on the letter in the form of a digital signature. Every imprint thus differs from every other imprint. The scanning of this information and the decryption thereof enables the postal authority to recognize counterfeit franking imprints. These requirements are differentiated according to the type of franking means employed to produce the imprint. An imprint wherein a specific set of franking data is involved in the encryption is proposed for stand-alone machines. At the postal side, it would become necessary—after decryption of the imprint—to implement a comparison with all previous imprints contained in a data bank. If an identical imprint is discovered by this comparison, this is a counterfeit. The outlay for a complete archiving of all imprints and the implementation of a comparison under real-time conditions, however, would be enormous.
Conventional postage meter machines, which usually only print a franking stamp in red, are also referred to as “closed systems” and, differing from what are referred to as “open systems” (PC frankers), do not incorporate the corresponding letter address into the encryption. A security module with progressive crypto-technology and a secured housing in which data of the data center can be stored, however, are still required for such “open” systems.
U.S. Pat. No. 5,200,903 (European Application 298 775) discloses a postage meter machine that prints the franking stamp as well as the address. For low mail volume, the outlay for the letter transport relative to the stationarily arranged printhead is disadvantageous. A further deficiency is that the printing of both images is to be implemented in only a single motion phase of the letter. This requires a printhead that is of a width corresponding to the widths of the two images of the franking stamp and the address field and the space lying therebetween. This is already 10 cm given a standard letter and up to 20 cm given other letter formats. A correspondingly wide thermal printhead can in fact be fundamentally manufactured, but would be disproportionately more expensive than a standard head of approximately 3-6 cm. Such widths cannot be implemented at all in ink jet printhead technology in the foreseeable future for manufacturing related reasons (yield). Another factor is that a constant spacing from the printing surface is required for an ink jet printhead and this would be a problem to maintain over a wide area, given the generally uneven surface of a filled envelope.
German OS 196 05 015 discloses an apparatus for printing on a print medium standing on edge, wherein two recesses are contained in a guide plate, one for the franking imprint and one for the address printing. The printhead can be adjusted between the two recesses. Even when the adjustment of the printhead is initiated immediately after the first print image was produced, a certain time passes until the printhead has assumed its second position. During this time, however, the letter continues to move, so that only a very limited letter length is available for the second imprint. Print images which overlap in the vertical direction are generally excluded from this solution.
U.S. Pat. No. 4,868,757 likewise discloses a solution for printing a franking stamp and address field with one printer unit. The letter is automatically drawn into the printing station. After assuming its printing position, the printhead is automatically lowered onto the letter surface until physical contact has been produced. The printhead is arranged so as to be movable in a direction in order to be able to reach the entire print field. The outlay for the automatic letter draw-in is a disadvantage of this solution. The use of an ink jet printhead is also precluded, again because an ink jet printhead requires a nearly constant distance of the printhead nozzles from the letter surface, even if the letter surface exhibits considerable irregularities. The franking imprint, moreover, is not counterfeit-proof.
In U.S. Pat. No. 5,025,386, an envelope is not only transported in one direction but also a printhead is moved back and forth in the same direction and opposite thereto in order to print a line within a window. The printing device must be orthogonally adjusted for printing a further line.
Orthogonal adjustment capabil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for operating a postage meter and addressing machine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for operating a postage meter and addressing machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for operating a postage meter and addressing machine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2924883

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.