Registers – Ordnance or weapon systems computer – With target tracking means
Reexamination Certificate
1999-02-22
2001-02-13
Frech, Karl D. (Department: 2876)
Registers
Ordnance or weapon systems computer
With target tracking means
C235S400000
Reexamination Certificate
active
06186397
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
A method for operating a fire-control system based on a HEURISTIC ALGORITHM.
The invention relates to a method for operating a fire-control system suitable for at least substantially simultaneously engaging a plurality of threats, employing sensors and weapons, whereby, on the basis of an environment of the fire control system and on the basis of a selected suitability criterion, one planning is selected from a pool of for instance heuristically determined feasible plannings in order to engage the threats.
2. Discussion of the Background
A method of this type is effectively applied in large fire-control systems as for instance installed on board naval craft. It is found, however, that the formulation of heuristically determined plannings, based on a large amount of tactical and logistic information is a time-consuming process. Moreover, a pool of plannings thus determined will never be complete, since experience shows that threats are continuously turning up for which no suitable planning exists. Also a minor change in the fire-control system proves to be disastrous to the existing plannings. In conclusion it has been found that a commander, who has the ultimate decision in the selection of a feasible planning, is faced with the virtually impossible task of selecting a best feasible planning in the short space of time available to him. The fact that the own ship's chance of survival is generally taken as suitability criterion illustrates the importance of finding the best feasible planning.
SUMMARY OF THE INVENTION
The method according to the invention is likewise based on a pool of feasible plannings, but is characterized in that prior to the selection of a planning, a genetic algorithm is applied to the pool of feasible plannings in order to generate additional plannings to replenish the pool and that a best feasible planning is selected from the pool with the suitability criterium, which may depend on the tactical situation, serving as the standard. This allows the generation of plannings which are not entirely determined on a heuristic basis, which may increase the chance of survival of the ship or of an object to be protected.
In the absence of special provisions, genetic algorithms will, besides to feasible plannings, especially generate plannings that are unfeasible, for instance when they do not allow for the limitations of a weapon, a sensor or the available ammunition. A favourable embodiment of the method according to the invention is thereto characterized in that the genetic algorithm generates feasible plannings only. This precludes the pool of feasible plannings from being contaminated with unfeasible ones.
In generating heuristically determined plannings, it is quite possible that certain groups of potentially feasible plannings are left out of consideration, for instance when they are not in accordance with the then current strategies. To this end, it is recommendable to also add several less well-considered, potentially feasible plannings which may cause the subsequent generations of plannings produced by the genetic algorithm to take a slightly unforeseen turn. An advantageous implementation of the method is thereto characterized in that, before applying the genetic algorithm to the pool of feasible plannings, at least one randomly selected feasible planning is added to the pool of feasible plannings.
It is inherent in many types of known genetic algorithms that the successively produced generations may strongly differ from one another. For the application described in this patent specification, this is more or less undersirable. It is advantageous that successive generations of feasible solutions show a certain measure of continuity. A further advantageous embodiment of the method according to the invention is thereto characterized in that the genetic algorithmgenerates successive generations of feasible plannings exclusively under application of crossovers, mutations, permutations and cloning.
A still further enhancement of the continuity can be achieved by applying a method which is characterized by generated crossovers being exclusively of the singular type.
To prevent marginally unfeasible plannings from being removed, a still further implementation of the method is characterized in that, by executing a repair algorithm, continuous efforts are made to convert an unfeasible planning generated by the genetic algorithm into a feasible planning.
In creating successive generations of feasible plannings, it is required to fix a moment on which a feasible planning is selected from the then available pool of feasible plannings. Because on every occasion that a new generation is created, cloning is also applied and, consequently, no near-optimal plannings will be lost, it is likely that the quality of feasible plannings that become available will continuously be improved. A still further advantageous embodiment of the method according to the invention is thereto characterized in that the best feasible planning is selected at a moment that the time available for the selection has at least substantially elapsed.
Because for the ship with the fire control system the effective objective may, per mission, vary, a still further embodiment is characterized in that, depending on the mission, a new suitability criterion can be imposed on the fire-control system. Thus, for instance, the suitability criterion will preclude missiles from being deployed during peacekeeping operations or chaff from being released for own defense purposes when defending a nearby valuable object.
A still further, exceptionally advantageous implementation of the method is characterized in that a simulation algorithm is provided to enable threat simulation. Simulations are generated only if conditions allow, with the objective to prepare the crew for a possible real attack. In case of a simulated threat, a pool of heuristic plannings is again produced, as is customary. The genetic algorithm is applied to this pool of heuristic plannings to enable the generation of increasingly optimized plannings. The suitability criterion constitutes the basis for comparing successively generated best plannings, for instance, for assessing the own ship's chance of survival. This significantly enhances the insight into the functioning of the usually highly complex fire-control system.
When applying the genetic algorithm, the pool of feasible plannings will, in the absence of further provisions, continue to increase, which may adversely affect the system's proper functioning. To this end, a further advantageous embodiment provides a first clearing algorithm for constantly limiting the pool of feasible plannings.
In the event of a given threat, a pool of feasible plannings is heuristically determined on the basis of the suitability criterion and on the basis of a required residual quantity of ammunition. This may entail that the plannings are, in a manner of speaking, designed momentarily, but also that they are at least partly selected from a superpool of feasible plannings, under application of the suitability criterion and in compliance with the required residual quantity of ammunition or other optimization criteria. This offers the advantage that extremely favourable plannings generated by means of the genetic algorithm for example while fighting a simulated threat, can be included in the superpool, directly available for future use.
Since the superpool also continues to grow, a still further advantageous embodiment of the invention is characterized in that there is provided a second clearing algorithm for periodically clearing the superpool of feasible plannings.
REFERENCES:
patent: 5341142 (1994-08-01), Reis et al.
Frech Karl D.
Hollandse Signaalapparaten B.V.
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
LandOfFree
Method for operating a fire-control system based on a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for operating a fire-control system based on a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for operating a fire-control system based on a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2577909