Method for mounting a semiconductor chip on a substrate, and...

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Bump leads

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S738000, C257S773000, C257S779000

Reexamination Certificate

active

06239488

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method for mounting a semiconductor chip on a substrate and to a semiconductor device that is adapted for mounting on a substrate.
2. Description of the Related Art
With the rapid advancement in semiconductor fabrication technology, the bonding pads on the surface of a semiconductor chip are getting smaller in size, and the distances between adjacent bonding pads are getting shorter. These can create difficulty when connecting the semiconductor chip to an external circuit, and can affect adversely the production yield.
SUMMARY OF THE INVENTION
Therefore, the main object of the present invention is to provide a method for mounting a semiconductor chip on a substrate so as to overcome the aforesaid drawback.
Another object of the present invention is to provide a semiconductor device adapted for mounting on a substrate and capable of overcoming the aforesaid drawback.
According to one aspect of the invention, there is provided a method for mounting a semiconductor chip on a substrate having a chip-mounting region provided with a plurality of solder points. The semiconductor chip has a pad-mounting surface provided with a plurality of bonding pads, which are to be connected to corresponding ones of the solder points and which are disposed on the pad-mounting surface at locations that are offset from locations of the corresponding ones of the solder points on the chip-mounting region. The method comprises the steps of:
superimposing a steel plate on the pad-mounting surface of the semiconductor chip, the steel plate being formed with a plurality of holes at positions registered with the bonding pads on the pad-mounting surface, each of the holes including a first hole part that exposes at least a part of the registered one of the bonding pads on the pad-mounting surface, and a second hole part that exposes a respective portion of the pad-mounting surface and that extends from the first hole part to a location corresponding to that of a respective one of the solder points on the chip-mounting region of the substrate, the holes being confined by walls that cooperate with the pad-mounting surface to form contact receiving spaces; and
using a conductive metal paste as printing material, printing on the steel plate to form conductive bodies in the contact receiving spaces, each of the conductive bodies having an extension portion that is disposed in the first hole part so as to connect electrically with the registered one of the bonding pads and that serves as a circuit trace, and an electrical connection portion that is formed in the second hole part on one end of the extension portion and that extends to the location corresponding to that of the respective one of the solder points on the chip-mounting region of the substrate.
According to another aspect of the present invention, there is provided a method for mounting a semiconductor chip on a substrate having a chip-mounting region provided with a plurality of solder points. The semiconductor chip has a pad-mounting surface provided with a plurality of bonding pads, which are to be connected to corresponding ones of the solder points and which are disposed on the pad-mounting surface at locations that are offset from locations of the corresponding ones of the solder points on the chip-mounting region. The method comprises the steps of:
forming a photoresist layer on the pad-mounting surface of the semiconductor chip;
forming a plurality of contact receiving cavities in the photoresist layer at positions registered with the bonding pads on the pad-mounting surface, each of the contact receiving cavities including a first cavity part that exposes at least a part of the registered one of the bonding pads on the pad-mounting surface, and a second cavity part that exposes a respective portion of the pad-mounting surface and that extends from the first cavity part to a location corresponding to that of a respective one of the solder points on the chip-mounting region of the substrate; and
forming conductive bodies in the contact receiving cavities, each of the conductive bodies having an extension portion that is disposed in the first cavity part so as to connect electrically with the registered one of the bonding pads and that serves as a circuit trace, and an electrical connection portion that is formed in the second cavity part on one end of the extension portion and that extends to the location corresponding to that of the respective one of the solder points on the chip-mounting region of the substrate.
According to still another aspect of the present invention, a semiconductor device is adapted for mounting on a substrate having a chip-mounting region provided with a plurality of solder points. The semiconductor device comprises:
a semiconductor chip having a pad-mounting surface provided with a plurality of bonding pads which are disposed on the pad-mounting surface at locations that are offset from locations of corresponding ones of the solder points on the chip-mounting region; and
a plurality of conductive bodies, each of which has an extension portion that is connected electrically to a registered one of the bonding pads and that serves as a circuit trace, and an electrical connection portion that is formed on one end of the extension portion and that extends to a location corresponding to that of a respective one of the solder points on the chip-mounting region of the substrate. The conductive bodies are formed by:
superimposing a steel plate on the pad-mounting surface of the semiconductor chip, the steel plate being formed with a plurality of holes at positions registered with the bonding pads on the pad-mounting surface, each of the holes including a first hole part that exposes at least a part of the registered one of the bonding pads on the pad-mounting surface, and a second hole part that exposes a respective portion of the pad-mounting surface and that extends from the first hole part to a location corresponding to that of the respective one of the solder points on the chip-mounting region of the substrate, the holes being confined by walls that cooperate with the pad-mounting surface to form contact receiving spaces; and
using a conductive metal paste as printing material, printing on the steel plate to form the conductive bodies in the contact receiving spaces, the extension portions of the conductive bodies being disposed in the first hole parts of the holes, the electrical connection portions of the conductive bodies being disposed in the second hole parts of the holes.
According to a further aspect of the present invention, a semiconductor device is adapted for mounting on a substrate having a chip-mounting region provided with a plurality of solder points. The semiconductor device comprises:
a semiconductor chip having a pad-mounting surface provided with a plurality of bonding pads which are disposed on the pad-mounting surface at locations that are offset from locations of corresponding ones of the solder points on the chip-mounting region;
a photoresist layer formed on the pad-mounting surface of the semiconductor chip, the photoresist layer being formed with a plurality of contact receiving cavities at positions registered with the bonding pads on the pad-mounting surface, each of the contact receiving cavities including a first cavity part that exposes at least a part of the registered one of the bonding pads on the pad-mounting surface, and a second cavity part that exposes a respective portion of the pad-mounting surface and that extends from the first cavity part to a location corresponding to that of a respective one of the solder points on the chip-mounting region of the substrate; and
a plurality of conductive bodies formed respectively in the contact receiving cavities, each of the conductive bodies having an extension portion that is disposed in the first cavity part so as to connect electrically with the registered one of the bonding pads and that serves as a circuit trace, and an electrical connection portion that is fo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for mounting a semiconductor chip on a substrate, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for mounting a semiconductor chip on a substrate, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for mounting a semiconductor chip on a substrate, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560134

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.