Method for monitoring the level of an osmotically active...

Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S345000, C600S573000, C600S584000, C600S373000, C204S403060, C204S415000

Reexamination Certificate

active

06224550

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to an implantable sensor for monitoring changes in the level of an osmotically active component, such as the glucose level in body liquid by detecting changed osmolality in the liquid across a semipermeable membrane.
BACKGROUND OF THE INVENTION
The present invention has utility with any osmotically active component in a body fluid, even though the following description, for simplicity, is focused on the monitoring of glucose.
It is a great demand, especially for persons suffering from diabetiesto monitor their glucose level in the blood as to gain a better regulation of the disease. Because of this, a number of different so called glucose metering system have been developed. One differs between two systems—invasive and non-invasive systems. Of these systems, it is the non-invasive system which has gained greatest interest and is currently used by thousands of people all over the world. The system is in principle based on a chemical reaction between a drop of blood and an oxidase on a so-called blood-stip. In its simplest form the glucose value can be evaluated by the changed colour on the strip, but more advanced systems includes an electronic recorder which calculate the actual value and shows it in display in mmol/l or mg/l. Even though the system is simple to operate, it has a number of drawbacks. It needs a sample of blood and this requires that persons have to pinch a hole in their finger to obtain this. And because of this, only a limited number of tests can be taken during a day, and the system can thus not monitor the glucose level continuously.
As regards invasive glucose sensors, a number of systems have been suggested and tried, but none of these have succeeded or been developed for practical use. The systems varies from implantable sensors based upon chemical reactions between blood and an oxidase, nuclear magnetic resonance, infrared light emission etc.
The objective of the present invention is to present an invasive sensor, especially a glucose sensor which can be implanted subcutaneously in interstitial liquid and where the level of glucose can be continuously monitored by an electronic detector outside the skin and where the electronic detector will show the values on a display, store the values and calculate average values over time, have an alarm for high and low preset values and at last, being able to calculate the need for insulin related to the actual level of glucose in the body and where this feature can be used to trigger an external or implanted insulin pump which altogether will act as an artificial pancreas.
The principle for the sensor is based upon osmosis.
In its simplest form, osmosis is the transportation of fluids across a semipermeable membrane separating two solvents with different concentration of solutes. The energy generated by the fluid flux activates the recording mechanism which can be an oscillating circuit or other means to detect the flux of water across the membrane in the current design.
The use of osmotic energy in a drug delivery system is known and in use. Felix Theeuwes describes in Journal of Pharmaceutical Sciences, 64: No.12, December 1975 the theory and principles related to the elementary osmotic pump, whereby drugs are delivered by an osmotic process at a controlled rate. Control resides in the: (a) water permeation characteristics of semipermeable membrane surrounding the formulated agent, and (b) osmotic properties of the formulation.
The use of osmosis as driving means for drug delivery systems is otherwise described by:
Sandra Z. Kernyi and Staynley L. Hartgraves, Oremature Excess Release From the Alzet Osmotic Pump, Pharmacology Biochemistry & Behavior, 27: pp. 199-201, 1987.
F. Theeuwes and S. I. Yum, Principles of the Design and Operation of Generic Osmotic Pumps for the Delivery of Semisolid or Liquid Drug Formulations, Annals of Biomedical Engineering, 4: 343-353, 1976.
Y. Sun, H. Xue, S. Janes, S. E. Sherman and D. L. Song, The use of an Alzet Osmotic Pump as a “Carryable” External Infusion Pump for Small Animal Studies, Proceed. Intern. Symp. Control. Rel. Bioact. Mater,. 17 (1990), Controlled Release Society, Inc., 17: 384-371, 1990.
As can be seen the osmotic principle and the use of this principle in drug delivery systems are well known.
SUMMARY OF THE INVENTION
The primary advantages of our design is the “multi stroke”, self-calibrating, feedback loop which allow us to monitor the glucose level continuously. The published delivery systems based upon osmosis are all “one stroke” systems that inject a fluid at a steady state into the body with no feed-back device that can control the flow of drugs. Our design is “close-loop”, since it continuously monitors the blood glucose levels and where the values are detected by the external detector.
Based upon the findings and the results from the different tests mentioned above the applicant wished to design an apparatus in the form of a housing with a semipermeable membrane and a calibrated fluid beneath the membrane being able to detect changes in the osmolality in the body fluid by osmosis and thus activating a sensing mechanism within the housing the semipermeable membrane may be a hollow fiber membrane, a sheet form membranme, or a corrugated membrane containing a osmotic calibrated fluid.


REFERENCES:
patent: 3187562 (1965-06-01), Rolfson
patent: 4660568 (1987-04-01), Cosman
patent: 4721677 (1988-01-01), Clark, Jr.
patent: 4832034 (1989-08-01), Pizziconi et al.
patent: 4860577 (1989-08-01), Patterson
patent: 5388449 (1995-02-01), LeVeen
patent: 5695623 (1997-12-01), Michel et al.
patent: 5711861 (1965-06-01), Ward et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for monitoring the level of an osmotically active... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for monitoring the level of an osmotically active..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for monitoring the level of an osmotically active... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2518354

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.