Method for modulating inflammatory response comprising...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S008100, C514S012200

Reexamination Certificate

active

06194376

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to a method for modulating the inflammatory response induced in a mammal following tissue injury. More particularly, this invention relates to a method for alleviating the tissue destructive effects associated with the inflammatory response. In a particular embodiment of the invention, this invention provides a method for alleviating immune cell-mediated tissue destruction following the initial tissue injury associated with oxygen deprivation to a tissue, such as can occur from ischemic-reperfusion injury, or following the initial tisue injury associated with high oxygen concentrations (hyperoxia).
BACKGROUND OF THE INVENTION
The body's inflammatory response to tissue injury can cause significant tissue destruction, leading to loss of tissue function. Damage to cells resulting from the effects of inflammatory response has been implicated as the cause of reduced tissue function or loss of tissue function in diseases of the joints (e.g., rheumatoid and osteo-arthritis) and of many organs, including the kidney, pancreas, skin, lung and heart. For example, glomerular nephritis, diabetes, inflammatory bowel disease, vascular diseases such as atheroclerosis and vasculitis and skin diseases such as psoriasis and dermatitis are believed to result in large part from unwanted acute inflammatory reaction. Graft rejection also is believed to be primarily due to the action of the body's immune/inflammatory response system.
A variety of lung diseases also are characterized by airway inflammation, including chronic bronchitis, emphysema, idiopathic pulmonary fibrosis and asthma. Another dysfunction associated with the inflammatory response is that mounted in response to injury caused by hyperoxia, e.g., prolonged exposure to lethally high concentrations of 0
2
(95-100% 0
2
). Similarly, reduced blood flow to a tissue (and, therefore reduced or lack of oxygen to tissues), as described below, also can induce a primary tissue injury that stimulates the inflammatory response.
It is well known that damage occurs to cells in mammals which have been deprived of oxygen. In fact, the interruption of blood flow, whether partial (hypoxia) or complete (ischemia) and the ensuing inflammatory responses may be the most important cause of coagulative necrosis or cell death in human disease. The complications of atherosclerosis, for example, are generally the result of ischemic cell injury in the brain, heart, small intestines, kidneys, and lower extremities. Highly differentiated cells, such as the proximal tubular cells of the kidney, cardiac myocytes, and the neurons of the central nervous system, all depend on aerobic respiration to produce ATP, the energy necessary to carry out their specialized functions. When ischemia limits the oxygen supply and ATP is depleted, the affected cells may become irreversibly injured. The ensuing inflammatory responses to this initial injury provide additional insult to the affected tissue. Examples of such hypoxia or ischemia are the partial or total loss of blood supply to the body as a whole, an organ within the body, or a region within an organ, such as occurs in cardiac arrest, pulmonary embolus, renal artery occlusion, coronary occlusion or occlusive stroke.
The tissue damage associated with ischemia-reperfusion injury is believed to comprise both the initial cell damage induce by the deprivation of oxygen to the cell and its subsequent recirculation, as well as the damage caused by the body's response to this initial damage. The secondary damage, resulting from the inflammatory response, is likely the source of significant tissue damage. It is thought that reperfusion may result in dysfunction to the endothelium of the vasculature as well as injury to the surrounding tissue. Among the factors thought to mediate these damaging effects are those associated with modulating the body's inflammatory response following tissue injury, e.g., cytokines such as interleukin-1 (IL-1) and tumor necrosis factor (TNF), and oxygen-derived free radicals such as superoxide anions. These humoral agents are produced by adhering neutrophilic leukocytes or by endothelial cells and have been identified at ischemic sites upon reperfusion. Moreover, TNF concentrations are increased in humans after myocardial infarction. The tissue damage associated with hyperoxia injury is believed to follow a similar mechanism, where the initial damage is mediated primarily through the presence of toxic oxygen metabolites.
As embodied herein, the term “ischemic-reperfusion injury” refers to the initial damage associated with oxygen deprivation of a cell and the subsequent damage associated with the inflammatory response when the cell is resupplied with oxygen. As embodied herein, the term “hyperoxia” refers to the initial tissue damage associated with prolonged exposure to lethally high doses of oxygen, e.g., greater than 95% 0
2
) and to the subsequent damage associated with the inflammatory response. Accordingly, as used herein, “toxic oxygen concentrations” refers to both lethally low oxygen concentrations or lack of oxygen, and to lethally high oxygen concentrations. Further, the expression “alleviating” means the protection from, reduction of and/or elimination of such injury.
Therefore, an object of the present invention is to provide a method for protecting mammalian tissue, particularly human tissue, from the damage associated with the inflammatory response following a tissue injury. Another object of the invention is to provide a method for alleviating tissue damage associated with ischemic-reperfusion injury in a mammal following a deprivation of, oxygen to a tissue in the mammal. A further object is to provide a method for alleviating tissue damaged associated with hyperoxia-induced tissue injury. Still another object of the invention is to provide a method for modulating the inflammatory responses in general, particularly those induced in a human following tissue injury.
Other objects of the present invention include providing a method for alleviating tissue damage associated with ischemic-reperfusion injury in a human which has suffered from hypoxia or ischemia following cardiac arrest, pulmonary embolus, renal artery occlusion, coronary occlusion or occlusive stroke, as well as a method for alleviating tissue damage associated with hyperoxia in a human following exposure to lethally high oxygen concentrations.
These and other objects and features of the invention will be apparent from the description, drawings and claims which follow.
SUMMARY OF THE INVENTION
The present invention provides a method for alleviating the tissue destructive effects associated with activation of the inflammatory response following tissue injury. The method comprises the step of administering to the animal a therapeutically effective amount of a morphogenic protein (“morphogen”, as defined herein) upon tissue injury, for a time and at a concentration sufficient to significantly inhibit or reduce the tissue destructive effects of the inflammatory response. In one preferred embodiment of the invention, the invention provides a method for alleviating the ischemic-reperfusion injury in mammalian tissue resulting from a deprivation of, and subsequent reperfusion of oxygen to the tissue. In another preferred embodiment, the invention provides a method for alleviating the tissue-destructive effects associated with hyperoxia.
The morphogens useful in the method of this invention are members of a family of proteins sharing a conserved six or seven cysteine skeleton in their C-terminal regions, as well as other conserved amino acids, and which are capable of inducing, in addition to bone and bone cartilage, tissue-specific morphogenesis for a variety of other organs and tissues. The proteins apparently bind to surface receptors or otherwise contact and interact with progenitor cells, predisposing or stimulating the cells to proliferate and differentiate in a morphogenically permissive environment. Thus, the morphogens are capable of stimulat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for modulating inflammatory response comprising... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for modulating inflammatory response comprising..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for modulating inflammatory response comprising... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2565360

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.