Plastic and nonmetallic article shaping or treating: processes – Optical article shaping or treating – Composite or multiple layer
Reexamination Certificate
2001-01-31
2004-04-13
Vargot, Mathieu D. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
Optical article shaping or treating
Composite or multiple layer
C264S001380, C264S255000
Reexamination Certificate
active
06719929
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to a method of treating polymeric materials, such as biomedical devices and contact lenses. In particular, the present invention is directed to a method of forming a coating onto a mold for forming a device and thereafter transferring the coating to the device as the device is formed within the mold.
BACKGROUND OF THE INVENTION
Many devices used in biomedical applications require that the bulk of the device have one property, while the surface of the device has another property. For example, contact lenses may have high oxygen permeability through the lens to maintain good corneal health. However, materials that exhibit exceptionally high oxygen permeability (e.g. polysiloxanes) are typically hydrophobic and will adhere to the eye. Thus, a contact lens generally has a core or bulk material that is highly oxygen permeable and hydrophobic, and a surface that has been treated or coated to increase hydrophilic properties, thereby allowing the lens to freely move on the eye without adhering excessive amounts of tear lipid and protein.
In order to modify the hydrophilic nature of a relatively hydrophobic contact lens material, a contact lens can be treated with a plasma treatment. For example, a high quality plasma treatment technique is disclosed in PCT Publication No. WO 96/31793 to Nicolson et al. Some plasma treatment processes, however, require a significant monetary investment in certain equipment. Moreover, plasma treatment requires that the lens be dry before exposure to the plasma.
Thus, lenses that are wet from prior hydration or extraction processes must be dried, thereby imposing added costs of obtaining drying equipment, as well as added time in the overall lens production process. As a result, a number of methods of altering the surface properties of polymeric biomaterials, such as contact lenses, have been developed. Some of these techniques include Langmuir-Blodgett deposition, controlled spin casting, chemisorption, and vapor deposition. Useful examples of Langmuir-Blodgett layer systems are disclosed in U.S. Pat. Nos. 4,941,997; 4,973,429; and 5,068,318.
A more recent technique used for coating electronic devices is a layer-by-layer (“LbL”) polymer absorption process, which is described in “Investigation of New Self-Assembled Multilayer Thin Films Based on Alternately Adsorbed Layers of Polyelectrolytes and Functional Dye Molecules” by Dongsik Yoo, et al. (1996). The process described in this article involves alternatively dipping hydrophilic glass substrates in a polyelectrolyte solution (e.g., polycations such as polyallylamine or polyethyleneimine) and then in an oppositely charged dye solution to form electrically conducting thin films and light-emitting diodides (LEDs). After each dipping, the substrates are rinsed with acidic aqueous solutions. Both the dipping and rinsing solutions have a pH of 2.5 to 7. Prior to dipping, the surfaces of the glass substrates are treated in order to create a surface having an affinity for the polyelectrolyte.
Similar to the above process, two other processes are described by 1995 publications entitled “Molecular-Level Processing of Conjugated Polymers” by Fou & Rubner and Ferreira & Rubner, respectively. These processes involve treating glass substrates that have hydrophilic, hydrophobic, negatively, or positively charged surfaces. The glass surfaces are treated for extended periods in hot acid baths and peroxide/ammonia baths to produce a hydrophilic surface. Hydrophobic surfaces are produced by gas-phase treatment in the presence of 1,1,1,3,3,3-hexamethyldisilazane for 36 hours. Charged surfaces are prepared by covalently anchoring charges onto the surface of the hydrophilic slides. For example, positively charged surfaces are made by further treating the hydrophilic surfaces in methanol, methanol/toluene, and pure toluene rinses, followed by immersion in (N-2 aminoethyl-3-aminopropyl) trimethyloxysilane solution for 12 to 15 hours. This procedure produces glass slides with amine functionalities, which are positively charged at a low pH.
In addition to the above-described techniques, U.S. Pat. Nos. 5,518,767 and 5,536,573 to Rubner et al. describe methods of producing bilayers of p-type doped electrically conductive polycationic polymers and polyanions or water-soluble, non-ionic polymers on glass substrates. These patents describe extensive chemical pre-treatments of glass substrates that are similar to those described in the aforementioned articles.
The methods described above generally relate to layer-by-layer polyelectrolyte deposition. However, these methods require a complex and time-consuming pretreatment of the substrate to produce a surface having a highly charged, hydrophilic, or hydrophobic nature in order to bind the polycationic or polyanionic material to the glass substrate.
To reduce the complexity, costs, and time expended in the above-described processes, a layer-by-layer polyelectrolyte deposition technique was developed that could be effectively utilized to alter the surfaces of various materials, such as contact lenses. This technique is described in U.S. patent application Ser. No. 09/199,609 filed on Nov. 25, 1998. In particular, a layer-by-layer technique is described that involves consecutively dipping a substrate into oppositely charged polyionic materials until a coating of a desired thickness is formed. Nevertheless, although this technique provides an effective polyelectrolyte deposition technique for biomaterials, such as contact lenses, a need for further improvement still remains. For example, one way to manufacture contact lenses is to dispense a substrate into a mold, and thereafter cure the mold such that the substrate becomes polymerized and forms a contact lens. After polymerizing the substrate, it can then be removed and coated as described above. However, the substrate can often become adhered to the mold such that it is destructively torn upon removal. Moreover, it is often difficult to handle the delicate lens after it is formed such that it can be coated as described above.
As such, a need currently exists for an improved method of coating a material, such as a contact lens, with polyelectrolyte (polyionic) layers. In particular, a need exists for an improved method of forming a polyionic coated contact lens in a mold without destructively tearing the lens from the mold upon removal and for allowing the lens to be treated upon removal from the mold.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide an improved method of treating a contact lens to alter surface properties.
It is another object of the present invention to provide a method of coating a mold with polyionic materials, such as polyanionic and polycationic materials.
Still another object of the present invention to provide an improved method of forming a contact lens within a mold.
Another object of the present invention is to provide a method of coating a mold with polyionic materials and thereafter forming a contact lens within the mold such the lens becomes coated with the polyionic materials.
These and other objects of the present invention are achieved by providing a method for applying polyionic materials to a mold used in forming polymeric substrates, such as contact lenses. The method of the present invention can apply successive layers of polyionic material onto a mold using various techniques, such as spraying, multi-step dipping, or dipping in a single solution.
In accordance with the present invention, a coating can be applied to a mold used in forming contact lenses. In general, a mold can be formed by any method known in the art, such as by injection molding. Typically, two mold halves are formed and later joined together such that a cavity can form therebetween. Although it is typically desired that the mold be made from a material having at least some affinity to polyionic materials, virtually all materials known in the art for making molds can be used. For example, various types of thermoplastic material, su
Lally John Martin
Nicolson Paul Clement
Qiu Yongxing
Winterton Lynn Cook
Meece R. Scott
Novartis AG
Vargot Mathieu D.
Zhou Jian S.
LandOfFree
Method for modifying a surface does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for modifying a surface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for modifying a surface will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3240801