METHOD FOR MINIMIZING PIRATING AND/OR UNAUTHORIZED COPYING...

Data processing: financial – business practice – management – or co – Business processing using cryptography – Usage protection of distributed data files

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C705S059000, C380S201000, C380S203000, C713S176000

Reexamination Certificate

active

06684199

ABSTRACT:

FIELD OF INVENTION
This invention relates generally to anti-data pirating technology. More specifically, the invention relates to a method and system for preventing piracy and/or unauthorized access and/or unauthorized copying of data, such as audio and/or video data from a data source, such as compact discs (CDs), digital versatile discs (DVDs), hard drive discs, an Internet Service Provider (ISP), and other data discs and/or data sources via direct connection, or via a local and/or global network, such as the Internet.
BACKGROUND OF THE INVENTION
There are two basic methods for recording sound and music—analog and digital. See e.g. Ken C. Pohlmann, “The Compact Disc”, THE COMPUTER MUSIC & DIGITAL AUDIO SERIES, Volume 5. The above-mentioned audio series, which was published by A-R Editions, Inc., in Madison, Wis., is, along with all volumes therein, incorporated by reference.
In analog recording, the recording medium (a tape) varies continuously according to the sound signal. In other words, an analog tape stores sound signals as a continuous stream of magnetism. The magnetism, which may have any value within a limited range, varies by the same amount as the sound signal voltage.
In digital recording, the sound signal is sampled electronically and recorded as a rapid sequence of separately coded measurements. In other words, a digital recording comprises rapid measurements of a sound signal in the form of on-off binary codes represented by ones and zeros. In this digital system, zeros are represented by indentations or pits in a disc surface, and ones are represented by unpitted surfaces or land reflections of the disc, such that a compact disc contains a spiral track of binary codes in the form of sequences of minute pits produced by a laser beam.
Music that is input to a digital recording and the requisite series of reproduction processes, must pass through the recording side of a pulse code modulation (PCM) system. A master recording of the music is stored in digital form on a magnetic tape or optical disc. Once the magnetic tape has been recorded, mixed and edited, it is ready for reproduction as a CD. The CD manufacturer then converts the master tape to a master disc, which is replicated to produce a desired number of CDs. At the end of the PCM system is the reproduction side, the CD player, which outputs the pre-recorded music.
If digital technology is used in all intermediate steps between the recording and reproduction sides of the PCM system, music remains in binary code throughout the entire chain; music is converted to binary code when it enters the recording studio, and stays in binary code until it is converted back to analog form when it leaves the CD player and is audible to a listener. In most CD players, digital outputs therefrom preserve data in its original form until the data reaches the power amplifier, and the identical audio information recorded in the studio is thereby preserved on the disc.
Optical Storage
The physical specifications for a compact disc system are shown in Prior Art FIG.
1
. They were developed jointly by Sony and Philips, and are defined in the standards document entitled Red Book, which is incorporated herein by reference. The CD standard is also contained in the International Electrotechnical Commission standard entitled, Compact Disc Digital Audio System, also incorporated herein by reference. Disc manufacturers, as well as CD player manufacturers, generally use these specifications.
All disc dimensions, including those pertaining to pit and physical formations, which encode data, are defined in the CD standard. For example, specifications information on sampling frequency, quantization word length, data rate, error correction code, and modulation scheme are all defined in the standard. Properties of the optical system that reads data from the disc using a leaser beam are also defined in the standard. Moreover, basic specifications relevant to CD player design are located in the signal format specifications.
Referring to Prior Art
FIG. 2
, the physical characteristics of the compact disc surface structure are described. Each CD is less than 5 inches in diameter whose track thickness is essentially thinner than a hair and whose track length averages approximately 3 and a half miles. The innermost portion of the disc is a hole, with a diameter of 15 mm, that does not hold data. The hole provides a clamping area for the CD player to hold the CD firmly to the spindle motor shaft.
Data is recorded on a surface area of the disc that is 35.5 mm wide. A lead-in area rings the innermost data area, and a lead-out area rings the outermost area. Both lead-in and lead-out areas contain non-audio data used to control the CD player. Generally, a change in appearance in the reflective data surface of a disc marks the end of musical information.
A transparent plastic substrate comprises most of the CD's 1.2 mm thickness. Viewing a magnified portion of the CD surface, as shown in Prior Art
FIG. 2
, the top surface of the CD is covered with a very thin metal layer of generally aluminum, silver or gold. Data is physically contained in pits impressed along the CD's top surface. Above this metalized pit surface and disc substrate, lies another thin protective lacquer coating (10 to 30 micrometers). An identifying label (5 micrometers) is printed on top of the lacquer coating.
A system of mirrors and lenses sends a beam of laser light to read the data. A laser beam is applied to the underside of a CD and passes through the transparent substrate and back again. The beam is focused on the metalized data surface that is sandwiched or embedded inside the disc. As the disc rotates, the laser beam moves across the disc from the center to the edge. This beam produces on-off code signals that are converted into, for example, a stereo electric signal.
The Pit Track
Prior Art
FIG. 3
shows a typical compact disc pit surface. Each CD contains a track of pits arranged in a continuous spiral that runs from the inner circumference to the outer edge. The starting point begins at the inner circumference because, in some manufacturing processes, tracks at the outer diameter of a CD are more generally prone to manufacturing defects. Therefore, CDs with shorter playing time provide a greater manufacturing yield, which has led to adoption of smaller diameter discs (such as 8 cm CD-3 discs) or larger diameter discs (such as 20 and 30 cm CD-Video discs).
Prior Art
FIG. 4
shows a diagram of a typical track pitch. The distance between successive tracks is 1.6 micrometers. That adds up to approximately 600 tracks per millimeter. There are 22,188 revolutions across a disc's entire signal surface of 35.5 millimeters. Hence, a pit track may contain 3 billion pits. Because CDs are constructed in a diffraction-limited manner—creating the smallest formations of the wave nature of light—track pitch acts as a diffraction grating; namely, by producing a rainbow of colors. In fact, CD pits are among the smallest of all manufactured formations.
The linear dimensions of each track on a CD is the same, from the beginning of a spiral to the end. Consequently, each CD must rotate with constant linear velocity, a condition whereby uniform relative velocity is maintained between the CD and the pickup.
To accomplish this, the rotational speed of a CD varies depending on the position of the pickup. The disc rotates at a playing speed which varies from 500 revolutions per minute at the center, where the track starts, to 200 revolutions per minute at the edge. This difference in speed is accounted for by the number of tracks at each position.
For example, because each outer track revolution contains more pits than each inner track revolution, the CD must be slowed down as it plays in order to maintain a constant rate of data. So, when the pickup is reading the inner circumference of the CD, the disc rotates at the higher speed of 500 rpm. And as the pickup moves outwardly towards the disc's edge, the rotational speed gradually decreases to 200 rpm. Thus, a constant linear

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

METHOD FOR MINIMIZING PIRATING AND/OR UNAUTHORIZED COPYING... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with METHOD FOR MINIMIZING PIRATING AND/OR UNAUTHORIZED COPYING..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and METHOD FOR MINIMIZING PIRATING AND/OR UNAUTHORIZED COPYING... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3220834

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.