Method for measuring temperature with an integrated circuit...

Thermal measuring and testing – Temperature measurement – By electrical or magnetic heat sensor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C323S315000, C327S539000, C327S538000, C327S543000

Reexamination Certificate

active

06412977

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates to the measurement of temperature and, more particularly, to measuring temperature with a device that is incorporated into an integrated circuit (IC) chip having additional (i.e. other than temperature-sensing) functionality.
BACKGROUND OF THE INVENTION
A first type of temperature-sensing device is capable of outputting a state signal indicative of whether a sensed temperature is either above or below a predetermined threshold temperature. A household thermostat is exemplary of such a threshold-sensing device. A second type of temperature-sensing device is capable of sensing temperature across a range of temperatures, and outputting a signal which varies in magnitude in proportion to the measured temperature. An electronic clinical thermometer is exemplary of such a temperature-sensing device.
The present invention is directed to the type of temperature-sensing device which is capable of outputting a signal which varies in magnitude in proportion to a sensed temperature, such a device being referred to hereinafter as a “temperature-measuring” device.
The present invention is further directed to sensing temperature with a temperature-measuring device which is implemented on an integrated circuit (IC) chip, the IC chip having intended functionality other than temperature measurement.
U.S. Pat. No. 5,039,878 (August 1977), incorporated in its entirety by reference herein, discloses a temperature sensing circuit. A semiconductor junction device (D1) integrated on an integrated circuit (IC) chip is used to generate a first signal (V1) having a known variation with temperature. A second signal (V2) is generated by passing a current (I2) which is proportional to absolute temperature through a resistor (R1), and also has a known variation with temperature which is opposite in sign to that of the first signal (V1). The two signals are compared to generate an output signal which is dependent on whether the temperature of the chip is below or above a predetermined threshold temperature. In this implementation of a temperature sensing circuit, the junction device (D1) is explicitly and advertently relieved of the temperature-detecting function (see column 1, lines 55-56).
The aforementioned U.S. Pat. No. 5,039,878 is representative of a temperature-sensing application wherein it is desired to sense the temperature of an operating IC chip, it being generally well-known that heat generated (dissipated) by the operation of electronic components is a source of concern and difficulty in many electronic systems, especially in those operating in enclosed, unventilated spaces, as well as those in high-performance miniaturized systems. The mechanisms of heat-generation in electronic systems are well known and understood. In essence, any process (e.g., an operating electronic system) which consumes power generates heat. In the case of an electronic circuit, the components of the circuit heat up, which, in turn, heats up anything in contact with them, including the surrounding air.
Other prior art applications for temperature-sensing devices include: controlling or stabilizing the operating temperature of circuit elements, the precision of which is affected either by ambient temperature changes or temperature changes caused by current flow in the circuit element itself; and controlling a supply of energy to other (than the temperature-sensing) circuit elements to prevent their breakdown due to excessive temperature rise (e.g., overheating).
Reference is made to the following U.S. Patents, each of which is incorporated in its entirety herein: U.S. Pat. Nos. 3,703,651; 4,044,371; 4,854,731; 4,952,865; 4,970,497; 5,063,307; 5,213,416; 5,396,120; 5,639,163; and 5,686,858.
As mentioned hereinabove, the present invention is directed to method and apparatus for measuring temperature over a range of temperatures. Although preferably implemented on-chip, the purpose is not to regulate the operation of the IC chip itself, but rather to monitor an ambient temperature in the vicinity of the IC chip, such as the temperature within a pneumatic tire. In the main hereinafter, method and apparatus for sensing ambient temperature with a transponder associated with the pneumatic tire is discussed.
Transponder or transceiver type identification systems are well known, and generally are capable of receiving an incoming interrogation signal and responding thereto by generating and transmitting an outgoing responsive signal. The outgoing responsive signal, in turn, is modulated or otherwise encoded so as to uniquely identify or label the particular object to which the transponder element is affixed. An example of such a transponder type identification system is disclosed in U.S. Pat. No. 4,857,893, issued Aug. 15, 1989 to Carroll and incorporated in its entirety herein. This patent describes a transponder device which receives a carrier signal from an interrogator unit. This carrier signal, of frequency F, is rectified by a rectifying circuit in order to generate operating power. Alternatively, the addition of a hybrid battery allows device to be converted into a self-powered beacon device. Logic/timing circuits derive a clock signal and second carrier signal of frequency F
from the received carrier signal. A uniquely-identifying data word is stored in a Programmable Read-Only Memory (PROM). The data word is encoded and mixed with the carrier signal in a balanced modulator circuit, the output of which is transmitted to the interrogator unit where it is decoded and used as an identifying signal. All electrical circuits of the transponder device are realized on the same monolithic semiconductor chip which may be implemented as a Complementary Metal Oxide Semiconductor (CMOS) device.
In the manufacture of pneumatic tires, it is desirable to uniquely identify each tire as soon as possible during the course of its fabrication. This is generally done by assigning an identification (ID) number to each tire. The ability to uniquely identify tires throughout their manufacture is particularly valuable in quality control in order that the source of manufacturing problems can readily be ascertained. For example, statistical process control and other methods can be used with tire identification to detect process parameters that are going out of specification to detect machinery wear, failure, or maladjustment. The identification information should be easily discernible throughout the manufacturing process, including throughout post-manufacturing (e.g., inventory control) stages.
It is also beneficial to be able to uniquely identify a tire throughout its service life (use), for example for warranty determination, and retreading of the tire should not adversely affect the ability to identify the tire. It is also important that the tire identification be readily discernible when the tire is mounted on a steel or aluminum rim (as is normally the case), including when the rim is one of a pair of rims in a dual wheel assembly (as is common with tractor trailers).
Aside from being able to uniquely identify a tire at various stages in its manufacture and service life, it is beneficial to be able to monitor tire pressure when the tire is in use. As is known, proper tire inflation is important to proper tire performance, including road-handling, wear, and the like.
U.S. Pat. No. 4,578,992 issued Apr. 1, 1986 to Galasko, et al. and incorporated in its entirety herein, discloses a tire pressure indicating device including a coil and a pressure-sensitive capacitor forming a passive oscillatory circuit having a natural resonant frequency which varies with tire pressure due to changes caused to the capacitance value of the capacitor. The circuit is energized by pulses supplied by a coil positioned outside the tire and secured to the vehicle, and the natural frequency of the passive oscillatory circuit is detected. The natural frequency of the coil/capacitor circuit is indicative of the pressure on the pressure-sensitive capacitor.
The use of radio frequency (RF) transponders, located

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for measuring temperature with an integrated circuit... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for measuring temperature with an integrated circuit..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for measuring temperature with an integrated circuit... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2861704

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.