Method for measuring network performance parity

Multiplex communications – Diagnostic testing – Determination of communication parameters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S386000, C379S015010

Reexamination Certificate

active

06526025

ABSTRACT:

FIELD OF INVENTION
The present invention relates to a method for measuring the performance of a telecommunications network. More specifically, it relates to a method for measuring the performance parity of a telecommunications network involving an Incumbent Local Exchange Carrier (“ILEC”) and at least one Competitive Local Exchange Carrier (“CLEC”).
BACKGROUND OF THE INVENTION
Many Incumbent Local Exchange Carriers (“ILECs”) desire to gain entry into the Inter-Local Access Transport Area (“LATA”) telecommunications business within their own region. In order to gain such entry, an ILEC must demonstrate that it has been equitable in providing interconnection services to Competitive Local Exchange Carriers (“CLECs”). Typically, the interconnection services provided to CLECs are measured, at least in part, through the network performance of the ILEC. In other words, ILECs are required to demonstrate that the interconnection services provided to CLECs are statistically comparable to the services the ILECs provide to their retail end users.
Presently, the methodology for measuring network performance parity with respect to interconnection between ILECs and CLECs is based on busy-hour trunk blocking statistics. Busy-hour trunk blocking relies on the percentage of calls that are not completed (i.e., are “blocked”) on a trunk group final in its respective busy hour, where a busy hour is defined to be the hour with the largest amount of trunk group “demand” (i.e., load). For more information on busy-hour trunk blocking statistics, see “Trunk Traffic Engineering Concepts and Application,” Bellcore SR-TAP-000191, Issue 2, Dec. 1989, specifically incorporated herein by reference.
There are both technical and historical reasons why networks have traditionally been engineered to achieve a specified “busy-hour blocking” objective on trunk group finals. Until the mid-1980's (i.e., AT&T divestiture), the Public Switched Telephone Network (“PSTN”) was focused on very few services (i.e., Plain Old Telephone Service (“POTS”), 800, and other voice-oriented applications) offered by essentially one company (i.e., AT&T and its sibling Bell Operating Companies). In addition, the traffic routing was almost always hierarchical, with routing changing very slowly, if at all. Also, the trunk group (and network) “busy hours” were sharply defined (i.e., much greater load than any other hour of the day), and the associated engineering methodologies, including Neal-Wilkinson Engineering, were well-understood, based on commonly-available measurements, and implemented in existing operations systems for telecommunication.
Today, in contrast to these conditions, the PSTN is a highly diversified arena, with many CLECs and wireless companies providing access services, including fast growing Internet access. The ILECs and CLECs may also differ in their respective network or service “busy hours,” sometimes on shared groups, significantly complicating engineering and service management. While the busy-hour trunk blocking statistic is still important in engineering networks, it is intended to be used as an engineering tool, rather than a quality of customer service measure, since traffic blocked on a trunk group is often alternate-routed to another trunk group and completed. Thus, busy-hour trunk blocking statistics do not indicate the actual call disposition, in view of the fact that calls may be blocked on some trunk groups, yet eventually carried (i.e., completed) on other groups. This is especially true, given that network management controls are regularly utilizing “non-hierarchical” or “out-of-chain” routes to improve call completions and customer service. In addition, marketing strategies by ILECs, CLECs and Inter-exchange Carriers (“IXCs”) are increasing and spreading the PSTN demands across the day, especially in “non-peak” hours, to create, essentially, “busy days” instead of “busy hours.” Thus, trunk blockage reports miss traffic that might be blocked during hours other than the “busy hour.” As a result, busy-hour trunk group blocking does not accurately assess the quality of customer service.
Accordingly, it would be desirable to provide a new methodology for measuring network performance parity that overcomes the disadvantages of the prior art and is innovative, accurate, fair and simple to use, especially in the multi-company arena of the present day PSTN. It would also be desirable to provide a performance measure that is sensitive to a variety of outage and overload situations. In addition, it would be desirable to have a parity metric that is based on classical statistics theory and consistent with assumptions underlying other widely-accepted tariffs and performance measures in the telecommunications industry. Moreover, it would be desirable to provide a new methodology for measuring network performance parity that incorporates meaningful measures of customer service and is based on call completion, rather than trunk blocking statistics. Finally, it would also be desirable to have a parity metric that encourages cooperative business behaviors, by the ILECs and each of their CLECs, that can result in high-quality access services at reasonable costs.
SUMMARY OF THE INVENTION
The present invention provides a method for measuring network performance parity comprising the steps of computing a call completion ratio for at least one network provider, and determining whether the call completion ratio passes a first test. The method also comprises the step of assessing whether a second test is determinate if the call completion ratio does not pass the first test. The method of the present invention further comprises the step of assessing whether the call completion ratio passes the second test if the second test is determinate.
In addition, the present invention provides another method for measuring network performance parity comprising the steps of computing a first call completion ratio for a first network provider, a second call completion ratio for a second network provider, a difference between the first call completion ratio and the second call completion ratio, and a variance for the difference. The method also comprises the steps of determining whether the first call completion ratio or the difference passes an initial test, and whether the variance is greater than a variance cutoff if the initial test is not passed. Moreover, the method comprises the step of determining whether the difference is greater than a threshold if the variance is not greater than the variance cutoff.


REFERENCES:
patent: 6333931 (2001-12-01), LaPier et al.
Szelag, C.R., “Trunk Demand Servicing in the Presence of Measurement Uncertainty,”BSTJ, vol. 59, No. 6, Jul.-Aug., 1980, pp. 845-860.
Committee T1 Report No. 11 (Jun. 1991).
“Trunk Traffic Engineering Concepts and Applications,” Bellcore SR-TAP-000191, Issue 2, Dec. 1989.
Pack, C.D., Gordon, J., Fredericks, A.A., “White Paper on Performance Parity,” Ameritech, 1998, Monmouth University, West Long Branch, NJ 07764.
“Common Transport Trunk Group Performance Data,” Bellcore SR STS-000317, Draft Issue 2, Apr. 1990.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for measuring network performance parity does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for measuring network performance parity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for measuring network performance parity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3169116

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.