Method for measuring flow rate of a continuous fluid flow

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Mechanical measurement system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06604053

ABSTRACT:

CROSS-REFERENCES TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
REFERENCE TO A “MICROFICHE APPENDI” (SEE 37 CFR 1.96)
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a method for measuring flow rate of a continuous fluid flow, and specifically to a method measuring the flow rate of a substantially continuous milk flow in a milking system. The method comprises the steps of generating a first signal at a first predetermined location representing a height of a selected section of the continuous fluid flow at the first predetermined location and for generating a second signal at a second predetermined location located in a selected direction and known distance representing that the selected section of the continuous fluid flow has traversed from a first predetermined location to a second predetermined location, receiving a first signal and a second signal and creating a data stream therefrom; calculating from the data stream a elapsed time for the selected section of the continuous fluid flow to traverse the known distance; deriving the cross-sectional area of the selected section from the height of the selected section; calculating the volume of fluid flow using a cross-sectional area in a elapsed time and generating an output signal representing the calculated volume of fluid flow.
2. Description of the Prior Art
Milking systems having a vacuum for performing milking of cows are well known in the art. Examples of such milking systems and controls therefor are described in several U.S. Patents, such as for example, U.S. Pat. Nos. 5,896,827; 4,616,215; 4,605,040; 4,572,104; 4,516,530; 3,783,837 and 3,476,085
U.S. Pat. No. 5,996,529 discloses a milk metering and cow identification system which both monitors milk production and identifies each of a plurality of animals being milked. A host computer manages both the flow of data throughout the system and the operation of the milk metering subsystems. The system includes a flow meter comprising a upper housing member and a lower housing member which in use are sealably coupled with a baffle plate via spring clips. The baffle forms a function of reducing the turbulent, pulsatile fluid flow from a milk pump into a manageable fluid stream such that an accurate and reliable determination of milk flow rate can be obtained for a cow coupled to a milker.
U.S. Pat. No. 5,116,119 discloses a method and apparatus for measuring liquid flow which includes directing the liquid to flow through one or more flow channels while exposing the liquid to electromagnetic radiation. The apparatus measures the transparency to electromagnetic radiation of the liquid flowing through the flow channel and measures the momentary attenuation of electromagnetic radiation by liquid flowing through the flow channels to determine the momentary volume of the liquid flowing through the flow channel. This permits the apparatus to make a determination of the momentary flow rate of the liquid flowing through the flow channels.
A reference entitled MACHINE MILKING AND LACTATION by A. J. Bramley, F. H. Dood, G. A. Mein and J. A. Bramley, published by Insight books, Vermon, U.S.A., describes the history, background and state of the art in milking systems and in Chapter 7 entitled
Basic Mechanics and Testing of Milking Systems
by G. A, Mein appearing at Pages 235 through 284, discloses and describes typical milking machine installations (the “Bramley et al. Reference”). The Bramley et al. Reference recognizes that controlling the maximum vacuum drop in the system is desirable because the vacuum drop depends on surface finish of pipes and the overall effective length, including bends and fittings of piping in the milking system and interference from various components such as milk flow meters.
It is known in the art that mastitis can occur if a milk blockage occurs within the inflation of a teat cup cluster causing a back flow of milk into the teat's orifice. Mastitis is an infection of animal body tissue within the mammary system of an animal. Mastitis may be caused by a number of other conditions including irritation to the teats, as is well known to persons skilled in the art. In a milking process, mastitis is generally caused by an introduction of foreign bacteria into the animal's udder, e.g., cow's udder, caused by severe irritation to the teats such that the test orifices cannot be protected from environmental bacteria entering the teats. When mastitis occurs, it is an infection that the animal, e.g., cow's, body must counteract. Thus the animal's body energy is to be used to fight infection rather than produce milk.
A milking machine or milking system generally cause mastitis in two ways.
Mastitis is caused by application of damaging vacuum levels to the cows' teats which create a severe irritation. Since it is difficult to isolate with any degree of certainty at what level of vacuum such irritation occurs, the conservative approach is the least level of vacuum, the better. Each animal, such as a cow, reacts differently to vacuums being applied to teats and each animal tolerates various levels of vacuum differently.
When vacuum is applied to an animal's teats, a lower than atmospheric pressure exists within the animal's udder. When the animal gives milk faster than the milking system can transport the milk away from the teats resulting in a blocking or interfering with the vacuum, a flooding situation occurs resulting in the vacuum being blocked from the teats and udder. The udder is under the operating vacuum level equal to the source before the flooding occurs when flooding occurs, at an atmospheric pressure is bleed into the milk claw.
The vacuum level within the milk claw drops because flooding blocks the source of vacuum from the milk claw. This results in the loss of vacuum to the teats and udder. The udder seeks to return to the ambient atmospheric pressure from the original vacuum level. As a result, air will then fill the vacuum. The filling of the vacuum within the cow's udder causes a foreign air to be introduced into or drawn into the cow's udder. Air does not typically carry a detrimental amount of foreign bacteria, but air under a pressure differential functions as a propellant for bacteria. As such, air itself does not cause significant detriment to the health of the animals, e.g. cow but the air may transport bacteria or other contaminants into the teats thereby contributing to mastitis.
If the vacuum seal breaks and water carrying bacteria is present around the udder, the water outside of or in the vicinity of the inflation and air at atmospheric pressure is drawn or sucked into the teats through the teat orifice.
To overcome such prior art, the inflations and milking systems have been designed to resist breakage of the vacuum seal and the outlet of milk claws and the entire milking system is sized to avoid interruption of the vacuum level. One such system is disclosed in U.S. Pat. No. 5,896,827.
Typically, animals, especially cows, are giving more milk at faster milk flow rates. The sizes and design of the state-of-the-art entire milking system are generally inadequate to handle the volume of milk without some degree of, and often severe, flooding. Also, known milk flow meter contribute to the flooding problems as discussed hereinbefore.
Flooding continually causes reverse pressure differentials and collapse of vacuum. The milk fluid, in effect, causes the average vacuum level within the claw, liners and teat end to be much lower than the desired vacuum level due to continual flooding which interrupts the vacuum and causes undesired pressure differences on the teats.
Introduction of known milk flow meters into vacuum controlled milking systems contribute to interruption of the vacuum in such system for the following reasons.
Prior art milk flow meters do not have a cross-sectional area sufficiently large to pass a continuous milk flow without occluding thereby contributing t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for measuring flow rate of a continuous fluid flow does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for measuring flow rate of a continuous fluid flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for measuring flow rate of a continuous fluid flow will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3115889

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.