Method for measuring concentrations of gases and vapors...

Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Means for analyzing liquid or solid sample

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S054000, C422S080000, C431S012000, C431S076000, C431S079000, C436S116000, C436S117000, C436S118000, C436S133000, C436S134000, C436S136000, C436S137000, C436S143000, C436S155000, C436S160000, C436S171000

Reexamination Certificate

active

06780378

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a method for measuring the concentration of gases and vapors in a gaseous mixture. More particularly, this invention relates to a method for measuring the concentration of oxygen in a gaseous mixture. This invention is particularly useful for measuring oxygen concentration in hot, dirty exhaust gases from combustion processes. In addition, this invention provides a means for real-time control of combustion processes based upon the concentration of oxygen or combustion-derived gases or other gases and vapors in the exhaust gases of the combustion processes.
2. Description of Prior Art
There are three basic methods for measuring the concentration of oxygen in a gas mixture in commercial use. However, due to their cost, the inherent time delay in obtaining the results and their unreliability in harsh industrial environments, which typically include a combination of heat, corrosive gases, dust and the like, none of these methods is rugged, low-cost or reliable enough to provide input to combustion control systems.
Paramagnetic oxygen analyzers are commonly used in continuous emissions monitoring systems. These analyzers measure the paramagnetic susceptibility of the sample gas by means of a magnetic-dynamic type measuring cell. While this technique is accurate and reliable, disadvantages of these instruments include the need for regular calibration and a response time that is too slow for control applications. In addition, the cell must be maintained at a constant temperature, for example 50° C., and the gas must be dry. In practice, exhaust gas samples must be cooled and dried before being sent to the analyzer, which results in significant time delays.
Commercially available electrochemical analyzers capable of directly measuring oxygen concentrations in hot exhaust gases utilize zirconium dioxide (ZrO
2
) as a solid electrolyte and platinum, NiCr and/or other compounds, as electrode materials. The anode is exposed to a reference gas while the cathode is exposed to the sampled gas stream. Zirconia is an ionic conductor at temperatures above 600° C. As a result, variation in the electrochemical potential of the cell reflects variation of the oxygen content of the sampled gas. While response time is rapid, these analyzers have several disadvantages including high labor maintenance costs, the use of expensive materials required to make the sensors, and a short service life of only six to 12 months in harsh environments.
A serious disadvantage of traditional continuous emissions monitors is a substantial time delay between the moment of combustion and when the results of the analysis are complete because the sample must be extracted from the flue gas stream, dried and finally analyzed. This makes the implementation of continuous emissions monitors for burner control very difficult. Optical sensors are capable of overcoming this problem. Narrow-band optical detection of intermediate species within the burner flame overcomes this time lag. In flame analyzers, different wavelength radiation sensors, filters and data acquisition and processing systems are combined to measure concentrations of a number of radicals formed during the combustion process including OH, CO, and CH. This information is used to determine the air/fuel ratio and the presence of soot. See, for example, U.S. Pat. No. 5,741,711, which teaches a method and apparatus for analyzing a sample by introducing the sample into a combustible mixture, igniting the combustible mixture to produce a flame, and detecting a characteristic of the resulting flame to determine the identity and/or concentration of one or more chemical substances in the sample, wherein the combustible gas mixture is generated by water electrolysis. The apparatus includes an inlet for introducing combustible gases, a feeder for introducing the sample into the combustible gases, an ignitor for igniting the combustible gases to produce a flame, a detector for detecting a characteristic of the resulting flame for determining the identity and/or concentration of one or more chemical substances in the sample, and a water electrolyser for generating combustible gases and for directing the gases to the inlet. This technique has a number of serious problems and limitations in industrial practice. System calibration is difficult, and there is typically strong interference from refractory or wall radiation. Flame turbulence requires sophisticated data processing to separate signals from noise. In addition, the radiation spectrum coming from real, industrial scale, flames often is estimated as black body radiation spectrum making separate radiation intensity measurements associated with detectable radicals difficult.
U.S. Pat. No. 5,708,507 teaches a method and apparatus for temperature resolved molecular emission spectroscopy of solid, liquid or gaseous materials in which a sample is vaporized and decomposed, and the vaporous sample is then transported into a combustion flame. A spectrum of intensity in the optical emission from the flame at a selected wavelength versus temperature of the sample defines molecular peaks which are characteristic of the sample material and allows both qualitative and quantitative analysis of the sample. See also U.S. Pat. No. 3,917,405 which teaches the use of a flame photometric detector for analysis of a sample burned in a flame and U.S. Pat. No. 3,609,042 which teaches an optical measuring apparatus for sampling material in which the samples are introduced into a flame and light beams which pass through the flame are detected by a detector which, in turn, produces electric signals corresponding to the concentrations of the samples within the flame.
Another method and apparatus for determining the concentration of an analyte such as oxygen in an unknown gas sample is taught by U.S. Pat. No. 6,091,504 in which a vertical cavity surface emitting laser is used as a variable wavelength light source which is “swept” through a wavelength range by varying the drive signal applied thereto. The variable wavelength light source is repeatedly “swept” through a range of frequencies determined by the drive signal, and the absorption is measured by the detector.
Notwithstanding the number of known methods and devices for analyzing the content of a gaseous mixture, none of them provide real-time analysis whereby the results may be employed to control an application, such as a combustion process. In addition, known methods and devices do not simultaneously measure oxygen concentration and the concentrations of other gases, including CO, total hydrocarbons, NO
x
and the like in static and flowing gases, including harsh industrial exhaust gas streams.
SUMMARY OF THE INVENTION
Accordingly, it is one object of this invention to provide a method and apparatus for measuring the oxygen concentration of gaseous mixtures in harsh industrial environments.
It is another object of this invention to provide a method and apparatus for measuring the concentrations of oxygen and other gaseous and vaporous components of a gaseous mixture which is not affected by the presence of contaminants including dust, halides, NO
x
and SO
x
.
It is yet another object of this invention to provide a method and apparatus for simultaneous measurement of O
2
, CO, total hydrocarbons and other gaseous and vaporous components of flue gases.
It is yet a further object of this invention to provide a method and apparatus for measuring the oxygen concentration of a gaseous mixture which does not require frequent calibration.
These and other objects of this invention are addressed by a method for measuring the concentration of at least one gaseous and/or vaporous component of a gaseous mixture comprising the steps of introducing a controlled sensor flame into the gaseous mixture, optically measuring at least one narrow spectral band in the controlled sensor flame, and calculating a concentration of the gaseous and/or vaporous component using the result obtained from the optical measuring of the at least one

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for measuring concentrations of gases and vapors... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for measuring concentrations of gases and vapors..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for measuring concentrations of gases and vapors... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3285027

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.