Method for measuring antigen concentration

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435 792, 436518, G01N 33573, G01N 3353, G01N 33543

Patent

active

059811994

ABSTRACT:
This invention provides a method for measuring an antigen concentration in a sample, which comprises: preparing VH-domain polypeptide and VL-domain polypeptide of an antibody specific to the antigen; labeling one of the polypeptides with a reporter molecule to form labeled polypeptides, and immobilizing the other polypeptides onto solid-phase to form immobilized polypeptides; contacting the antigen-containing sample and the labeled polypeptides with the solid-phase; and measuring the reporter molecule of the labeled polypeptides bound to the immobilized polypeptides. The present invention permits simpler and quicker sandwich ELISA for measurements of an antigen concentration in high sensitivity.

REFERENCES:
patent: 4859609 (1989-08-01), Dull et al.
patent: 5030576 (1991-07-01), Dull et al.
patent: 5196510 (1993-03-01), Rodwell et al.
Anthony et al., "Production of stable anti-digoxin Fv in Escherichia coli" Mol. Immunol. (1992) 29:1237-1247.
Better et al., "Escherichia coli secretion of an active chimeric antibody fragment" Science (1988) 240:1041-1043.
Bird et al., "Single-chain antigen binding proteins" Science (1988) 242:423-426.
Chothia et al., "Domain association in immunoglobulin molecules. The packing of variable domains" J. Mol. Biol. (1985) 186(3):651-663.
Davies et al., "`Camelising` human antibody fragments: NMR studies on VH domains" FEBS Letters (1994) 339:285-290.
Davies et al., "Antibody VH domains as small recognition units" Bio/Technology (1995) 13:475-479.
Glockshuber et al., "A comparison of strategies to stabilize immunoglobulin Fv-fragments" Biochemistry (1990) 29:1362-1367.
Hamel et al., "Relative noncovalent association constant between immunoglobulin H and L chains is unrelated to their expression or antigen-binding activity" J. Immunol. (1987) 139:3012-3020.
Hamel et al., "Structural basis for the preferential association of autologous immunoglobulin subunits: role of the J region of the light chain" Mol. Immunol. (1984) 21:277-283.
Hamel et al., "The role of the VL and VH-segments in the preferential reassociation of immunoglobulin subunits" Mol. Immunol. (1986) 23:503-510.
Hamers-Casterman et al., "Naturally occurring antibodies devoid of light chains" Nature (1993) 363:446-448.
Hochman et al., "Folding and interaction of subunits at the antibody combinging site" Biochemistry (1976) 15:2706-2710.
Holliger et al., "Engineering bispecific antibodies" Curr. Opin. Biotech. (1993) 4:446-449.
Horne et al., "Noncovalent association of heavy and light chains of human immunoglobulins. III. Specific interactions between VH and VL" J. Immunol. (1982) 129:660-664.
Huston et al., "Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli" Proc. Natl. Acad. Sci. USA (1988) 85:5879-5883.
Internet abstract of Hillier et al., "WashU-NCI human EST project" (1997) http://www.ncbi.nlm.nihgov/htbin-. . . ery?uid=2206787&form=6&db=n&Dopt=g/ (2 pages total).
Internet abstract of Lu et al., "Importance of the dimer-dimer interface for allosteric signal transduction and AMP cooperativity of pig kidney fructose-1,6-bisphosphatase. Site-specific mutagenesis studies of Glu-192 and Asp-187 residues on the 190's loop" J. Biol. Chem. (Feb. 1997) 272(8):5076-5081, http://www.medscape.com/server-jav . . . d96-97+247339+(giroux:au+and+loop), One page total.
Internet abstract of Maekawa et al., "Detection and characterization of new genetic mutations in individuals heterozygous for lactate dehydrogenase-B(H) deficiency using DNA conformation polymorphism analysis and silver staining" Hum. Genet. (Mar. 1993) 91(2):163-168, http://www.medscape.com/server.jav . . . (maekawa:au+and+'silver+staining'), One page total.
Internet abstract of Mainhart et al., "A three-dimensional model of an anti-lysozyme antibody" J. Mol. Biol. (1987) 194:713-724, http:/
cbi.nlm.nih.gov/htbin-. . . uery?uid+196584&form=6&db=n&Dopt=g/ (One page total).
Internet Abstract of Miyazaki et al., "Chemical modification and site-directed mutagenesis of Tyr36 of 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8" Protein Eng. (Jan. 1994) 7(1):99-102, http://www.medscape.com/server-jav . . . (oshima:au+and+'thermophilus+HB8'), One page total.
Internet Abstract of Truong et al., "Inactive and temperature-sensitive folding mutants generated by trptophan substitutions in the membrane-bound d-lactate dehydrogenase of Escherichia coli" Biochemistry (Nov. 1991) 30(44):10722-10729, http://www.medscape.com/server-jav . . . 508057+(truong:au+and+'d-lactate), One page total.
Internet abstract of Wagner et al., "Site directed mutagenesis: a tool for enzyme mechanism dissection" Trends Biotechnol. (Sep. 1990) 8(9):263-270, http://www.medscape.com/server-jav . . . 63583+(benkovic:au+and+dissection), One page total.
Internet abstract of Wigley et al., "Structure of a ternary complex of an allosteric lactate dehydrogenase from Bacillus stearothermophilus at 2.5 A resolution" J. Mol. Biol. (Jan. 1992) 223(1):317-325, http://www.medscape.com/server-jav . . . 6087+(wigley:au+and+dehydrogenase), One page total.
Joh et al., "Cloning and sequence analysis of cDNAs encoding mammalian mitochondrial malate dehydrogenase" Biochemistry (1987) 26:2515-2520.
Klein et al., "Equilibrium and kinetic aspects of the interaction of isolated variable and constant domains of light chain with the Fd fragment of immunoglobulin G" Biochemistry (1979) 18:1473-1481.
Lavoie et al., "Experimental analysis by site-directed mutagenesis of somatic mutation effects on affinity and fine specificity in antibodies specific for lysozyme" J. Immunol. (1992) 148:503-513.
Maeda et al., "Chimeric antibody binding domain--Vargula luciferase engineered for immunological purposes" Abstracts of the 8th Annual Meeting of the Protein Engineering Society of Japan, Protein Engineering (1996) 9(9):811 (Abstract 2).
Maenaka et al., "A stable phage-display system using a phagemid vector: phage display of hen egg-white lysozyme (HEL), Escherichia coli alkaline, phosphatase, and anti-HEL monoclonal antibody, HyHEL-10" Biochem. Biophys. Res. Comm. (1996) 218:682-687.
Mallender et al., "Comparative properties of the single chain antibody and Fv derivatives of mAB 4-4-20. Relationship between interdomain interactions and the high affinity for fluorescein ligand" J. Biol. Chem. (1996) 271(10):5338-5346.
McCafferty, J. et al., "Phage antibodies filamentous phage displaying antibody variable domains" Nature (1990) 348(6301):552-554.
Mei et al., "Vasoactive intestinal peptide hydrolysis by antibody light chains" J. Biol. Chem. (1991) 266:15571-15574.
Muyldermans et al., "Sequence and structure of VH domain from naturally occuring camel heavy chain immunoglobulins lacking light chains" Protein Engineering (1994) 7:1129-1135.
Padlan et al., "Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex" Proc. Natl. Acad. Sci. USA (1989) 86:5938-5942.
Parsons et al., "Directing phage selections towards specific epitopes" Protein Engineering (1996) 9(11):1043-1049.
Riechmann et al., "Expression of an antibody Fv fragment in myeloma cells" J. Mol. Biol. (1988) 203:825-828.
Smith-Gill et al., "A three-dimensional model of an anti-lysozyme antibody" J. Mol. Biol. (1987) 194:713-724.
Smith-Gill et al., "Contributions of immunoglobulin heavy and light chains to antibody specificity for lysozyme and two haptens" J. Immunol. (1987) 139:4135-4144.
Sun et al., "Antigen recognition by an antibody light chain" J. Biol. Chem. (1994) 269:734-738.
Tang et al., "A high affinity digoxin-binding protein displayed on M13 is functionally identical to the native protein" J. Biol. Chem. (1995) 270(14):7829-7835.
Tsumoto et al., "Contribution to antibody-antigen interaction of structurally perturbed antigenic residues upon antibody binding" J. Biol. Chem. (1994) 269:28777-28782.
Tsumoto et al., "Effect of the order of antibody variable regions on the expression of the single-chain HYHEL10 FV fragment in E. coli and the thermodynamic analysis of its antigen-binding properties" Bioch

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for measuring antigen concentration does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for measuring antigen concentration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for measuring antigen concentration will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1454022

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.