Method for manufacturing steel

Specialized metallurgical processes – compositions for use therei – Processes – Producing or treating free metal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S471000, C075S472000, C075S010420, C075S010660, C164S266000, C164S417000, C164S476000

Reexamination Certificate

active

06264723

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and a plant for manufacturing steel in an electric steel furnace.
2. Description of the Related Art
Several methods for producing steel are known in the art. Essentially two types of methods are used today, i.e., the manufacture of steel in accordance with the conventional blast furnace converter method, and the method using the electric steel furnace.
The electric steel furnace is usually charged with 80 to 100% scrap and small portions of sponge iron (reduced iron ore) from a direct reduction plant. The electric steel furnace is used as a melting vessel and the further metallurgical process takes place in a secondary metallurgical step.
It has been know since about 1980 to manufacture hot strip on the basis of thin slabs having a size of between 40-100 mm and a maximum width of 1,800 mm together with a continuous finishing train following an electric steel plant. Using this technology, at the present time about 15% of the hot strip production of about 300 million tpa is carried out. In this connection it was possible to lower the costs for producing the hot strip on the basis of an electric steel plant in conjunction with a thin slab plant by about 50% as far as the investment costs are concerned as well as the total manufacturing costs. In addition to further processing into strips and sheet metal, the process is used for producing long products, such as sections or wire.
In connection with the electric steel method, especially in the last years problems have occurred with respect to the increasing raw material prices for scrap and the low availability of scrap. In addition, components in the scrap lead to an increase of the accompanying elements copper (due to scrap copper wires) as well as of zinc and tin which, as is well known, lead to disadvantageous reductions of the quality in the material steel. Moreover, the production times required in the electric steel furnace with a sequence of tap to tap times of 50 to 70 minutes are too long in relation to the continuous casting plant.
SUMMARY OF THE INVENTION
Therefore, it is the primary object of the present invention to provide a method and a plant for manufacturing steel which eliminate the problems discussed above.
In accordance with the present invention, the electric steel furnace is charged
with at most 70% by weight scrap, and
with at most 60% by weight liquid pig iron obtained in a mini-blast furnace, and optionally with additional iron carriers, wherein the mini-blast furnace is operated for producing the pig iron with iron pellets and/or coarse or lump ore and coke as well as coal; and
the melting process in the electric steel furnace is operated
using electrical energy, and
simultaneously using oxygen and injected coal.
The plant according to the present invention is composed of a mini-blast furnace and an electric steel furnace.
The invention is based on the concept of using at most 60% liquid pig iron and optionally additionally other iron carriers in an electric steel furnace, wherein simultaneously the proportion of scrap is minimized. The liquid pig iron is reduced in a mini-blast furnace with the use of iron pellets and/or coarse ore and coke as well as coal. The melting process in the electric steel furnace takes place with the use of electrical energy and the simultaneous use of oxygen and injected coal.
The mini-blast furnace advantageously has a capacity of 0.3 to 1.0 million tpa pig iron.
When charging the electric steel furnace with 30-50% pig iron, the capacity of the electric steel furnace adapts in an optimum manner to the maximum capacity of a conventional mini-mill for hot strip with 1.5 to at most 3 million tpa hot strip. In other words, when using about 30-50% by weight pig iron, 0.5-0.7 million tpa pig iron are used in the first stage of construction of a mini-mill and 0.9-1.5 million tpa pig iron are used in case of the full capacity of a mini-mill.
The mini-blast furnace is preferably charged 60-100% by weight with iron pellets, at most 40% by weight coarse ore and at most 400, preferably 250-200 kg, coke per ton of pig iron through the furnace throat. The blast furnace additionally has a coal injection device in the tuyeres through which the advantageously at most 250 kg coal per ton of pig iron are blown in. Also blown is hot air which is enriched with at most 10% by weight oxygen.
Since the structural height of the mini-blast furnace is smaller than that of a conventional blast furnace, the pressure load is also lower and the coke can be of average or lower quality. In addition, it is possible to operate the furnace without sinter, but with large quantities of coal.
In addition to the liquid pig iron, it is advantageous to use additional iron carriers with which the electric furnace is charged. These are preferably direct reduction materials (sponge iron) as well as solid pig iron in the form of pigs. By the addition of liquid pig iron and the additional variations of the iron carriers, the scrap portion can be reduced as desired in dependence on its price and can be replaced by the material which is most advantageous with respect to price and availability.
By reducing the scrap portion, the portion of the disadvantageous accompanying elements copper, zinc and tin in the steel also drops.
The reduction of the scrap portion and the use of liquid pig iron in the electric steel furnace in an amount of at most 60% by weight of the total quantity to be melted using chemical energy in the form of 4% by weight carbon lead, through the use of oxygen of preferably at most 65 m
3
/t steel and a coal injection with the simultaneous use of the furnace electrodes, to a significantly reduced melting time. Consequently, the so-called tap to tap time, i.e., the time between charging and discharging of the furnace can be reduced to an interval of 25-45 minutes from previously 50-70 minutes which were required when the scrap portion is 100% by weight
The proposed method serves to manufacture steel for the further processing into hot strip or long products, for example, rods, pipes, sections, wire. The shortened melting sequence in the electric steel furnace described above leads under particularly advantageous conditions to a doubling of the output of the steel mill, to an increase of the energy utilization from previously 50% to a maximum of 80% and to a high flexibility of the steel mill with respect of the process sequences of the thin slab casting and rolling mill.
In summary, the advantages of the method and plant according to the present invention are as follows:
increase of productivity;
increase of energy utilization of a maximum of 80% by reducing the tap to tap time to at least 25 minutes;
increase of the steel mill flexibility;
improvement of the product quality;
stabilization of the production costs by a control of the raw material procurement prices based on the high flexibility of the raw materials used in the electric steel furnace.
In the case of a required total pig iron production of at most 1.5 million tpa, it has additionally been found advantageous to construct two or three mini-blast furnaces each having a standard capacity of 0.5 to 0.7 million tpa instead of a conventional blast furnace, so that the advantages with respect to investment costs, raw material costs, ensuring the availability of liquid pig iron and the flexibility of the total system can be utilized.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of the disclosure. For a better understanding of the invention, its operating advantages, specific objects attained by its use, reference should be had to the drawing and descriptive matter in which there are illustrated and described preferred embodiments of the invention.


REFERENCES:
patent: 1691401 (1928-11-01), Moldenke
patent: 3079247 (1963-02-01), Durrer et al.
patent: 3218155 (1965-11-01), Strassburger
patent: 3282678 (1966-11-01), Melcher et al.
patent: 3610315 (1971-10-01), Ju

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for manufacturing steel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for manufacturing steel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for manufacturing steel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2479420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.