Coating processes – Applying superposed diverse coating or coating a coated base – Metallic compound-containing coating
Reexamination Certificate
2002-03-20
2003-05-06
Turner, Archene (Department: 1775)
Coating processes
Applying superposed diverse coating or coating a coated base
Metallic compound-containing coating
C204S192100, C204S192150, C427S402000, C427S419100, C427S450000, C427S454000
Reexamination Certificate
active
06558749
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to a workpiece, in particular tool, with wear-protective coating as well as a process for its manufacture.
To create a wear-protection system on workpieces, in particular on tools, in particular on steel and hard metal tools, it is known to apply hard material coatings, for example layers of TiN or TiCN onto the workpiece to protect. By hard metals are understood sintered carbides (cemented carbide). It is possible to increase the wear resistance, in particular the oxidation resistance, of said layers by adding aluminum. This is disclosed for example in JP-OS No. 4-53642/92 or 5-67705/93. It is further known to improve the properties of a wear-protective coating by forming a superlattice in connection with which reference is made, for example to JP-OS No. 7-97679/95.
The requirements made of the wear protection are increasing. Thus, for example, increasingly higher demands are made of tools with wear-protective coating in machining with respect to the attainable cutting speed in order to arrive thereby at higher throughputs or at greater efficiency.
In form working conventionally most often a soft steel was worked before the heat treatment. Today the form working is carried out only after the heat treatment, i.e. after the steel has been hardened.
In many cases, such as for example during high-speed machining, the oxidation resistance of the above mentioned coatings with aluminum addition is not satisfactory, for example for the machining working of hardened materials. This is the case even though, as mentioned, the addition of aluminum improves the properties in this regard, such as that of TiN or TiCN layers.
The stated wear-protective coatings are conventionally applied by vacuum coating processes, such as for example by ion plating or, if appropriate, also by CVD processes.
When applying these layers, such as for example through ion plating, the residual compressive stress increases proportionally to the thickness of the applied layer. Corresponding to the increase of the residual compressive stress the adhesion, or the adhesion to be considered under the aspect of the shearing load, between layer and workpiece body, in particular comprising steel or hard metal, decreases such that layer thicknesses of maximally 5 &mgr;m can be used. Since precisely during ion plating relatively pronounced residual compressive stresses remain, it is also known that due to this process workpieces with wear-protective coating are inferior compared to workpieces coated by means of chemical vapor deposition processes (CVD) in that when the last denoted process is used, due to the stated residual compressive stresses, layer thicknesses of 5 to 15 &mgr;m can be used.
If the hardness of the layer is increased through forming a superlattice, this does increase the wear resistance, but simultaneously such a hard layer has a high Young's modulus and very high residual compressive stresses, which forces the thickness of such a layer to be restricted merely to 3 to 5 &mgr;m. The occurrence of said high residual compressive stresses when coating with superlattice structures leads, moreover, also to problems of adhesion between layer and workpiece body.
SUMMARY OF THE INVENTION
It is the task of the present invention to propose a workpiece, in particular comprising steel or a hard metal, with wear-protective coating and a process for its manufacture, on which occur significantly decreased residual compressive stresses. Thus, the workpiece with wear-protective coating is to comprise a wear protection layer system which, while simultaneously increasing the wear resistance, and thus decreasing the adhesion problems, can be realized to be substantially thicker than has previously been the case. This is solved through the workpiece with wear-protective coating which is distinguished according to the characterizing clause of the claims.
It has accordingly been found that by providing a wear protection layer system with at least two successive layers, each with differing crystallographic privileged orientation, the posed task is solved. Thus, an increased layer thickness is realizable without the residual compressive stresses increasing correspondingly.
Preferred embodiments of the invention are described in the following.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
A corresponding process operation of the coating process with materials suitable for wear protection yields in each instance a crystallographic privileged orientation in the crystal growth, such as, for example and in particular in PVD processes, therein in particular with reactive processes, such as with cathodic arc vaporization and sputtering. A layer produced for example through arc vaporization in general comprises a privileged orientation in crystal growth so that the layer is formed with a columnar crystal structure. As a rule, a columnar crystal particle is formed as a monocrystal which has grown in a specific direction and has very few defect loci. The crystals are lined up continuously and thus form a layer with the residual compressive stresses, as mentioned, increasing proportionally to the thickness of the layer. The invention is based on the findings that if two successive layers are deposited with differing crystallographic privileged orientations, a multiplicity of lattice defect loci are introduced at the interface between the layers. If, for example and preferably, a layer with privileged orientation to the (111) plane comprising TiN and a layer with privileged orientation to the (200) plane comprising TiCN or a layer with privileged orientation to the (111) plane comprising TiAICN are layered pairwise as two- or multilayer systems wherewith the layer interfaces are formed discontinuously and an epitaxial growth is prevented, the stated multiplicity of lattice defect loci is introduced at the layer interfaces. During the further layer growth, these lattice defects are oriented such that the residual compressive stress is decreased over the entire layer system. A residual compressive stress equalization zone between said layers is virtually formed. Thus the formation of a collectively thick layer or a layer system with low residual compressive stress becomes possible.
Said layers are therein preferably each produced of one of the following materials:
TiN, TiCN, TiAlN, TiAlCN,
either of the same material or preferably of differing said materials.
A TiAlN layer with a privileged orientation to the (200) plane having a thickness of 0.5 &mgr;m has a residual compressive stress of 1.2 GPa while the residual compressive stress in a TiAlN layer having a thickness of 10 &mgr;m and identical orientation already exceeds 8 GPa and its adhesion is correspondingly worse. But if a 0.5 &mgr;m thick TiALN layer with privileged orientation to the (200) plane and a 0.5 &mgr;m TiN layer with privileged orientation to the (111) plane are applied alternately for the formation of a wear protection layer system, and specifically multilayered, for example up to a thickness of 10 &mgr;m, surprisingly a remaining residual compressive stress of maximally 2 GPa results.
As is evident, in a preferred embodiment the differing privileged orientation is realized by using differing layer materials, with identical or differing control of a vacuum coating process. But it is entirely possible to deposit the layers with differing privileged orientation of one and the same layer material, however, by means of differing process control.
As layer material pairs are preferred:
TiN/TiN
TiN/TiCN
TiN/TiAlN
TiN/TiAlCN
TiCN/TiCN
TiCN/TiAlN
TiCN/TiAlCN
TiAlN/TiAlN
TiAlN TiAlCN
TiAlCN/TiAlCN
and in each of the denoted combinations of preferably differing materials the one or the other layer can be applied as the first layer onto the workpiece.
Among the layer combinations with differing materials, preferred as stated, are especially preferred the combinations:
TiN/TiAlN
TiCN/TiAlCN
or, if appropriate,
TiN/TiAlCN
TiCN/TiAlN
As coating processes are especially preferred reactive or non-reactive PVD processes, a
Notaro & Michalos P.C.
Turner Archene
Unakis Balzers AG
LandOfFree
Method for manufacturing a workpiece with wear-protective... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for manufacturing a workpiece with wear-protective..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for manufacturing a workpiece with wear-protective... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3055957