Method for manufacturing a golf club

Games using tangible projectile – Golf – Club or club support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S669000

Reexamination Certificate

active

06558273

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of the Invention
The present invention relates to a method for manufacturing a golf club, particularly to a material used in the method.
2. Description of the Prior Art
In a golf club head, one of means for enlarging the sweet area, i.e., an area on a face where a ball travels comparatively straight and well when struck thereon, is to large-size a club head itself. In recent years, some heads with more than 300 cc volume have come onto the market. Even if a club head is large-sized, yet the total weight thereof must be suppressed so as to ensure the easiness to handle. As a result, the head must be formed hollow inside, and its outer shells must be thinned. However, thinned outer shells generally lead to decreased strength of a club head, even to the likelihood of the head being damaged due for example to the impact force at the time of striking balls. As you need ensure sufficient strength of a face for striking balls, a face has heretofore been formed to at least 3.0 mm thickness.
The main current of recent golf clubs has been directed to titanium or titanium alloy head. As titanium alloy is lighter but stronger than stainless steel, the degree of freedom in designing a head is increased, thereby generally enabling the manufacture of a club head which is larger than a head made of stainless steel. Consequently, the sweet area is enlarged, as mentioned above, so that the stable flight of golf balls can be obtained.
Conventional titanium alloy based materials for a golf club head have been alpha+beta type alloys such as Ti-6Al-4V alloys and Ti-4.5Al-3V-2Fe-2Mo alloys, or beta type alloys such as Ti-15V-3Cr-3Sn-3Al alloys, and etc. The Ti-6Al-4V alloys have been most frequently used among such titanium alloys in various industrial fields, which however, are not suitable for cold working, and thus a great deal of labor and costs have been required to form a plate to a 1 to 5 mm thickness, the dimension generally required for the materials of a golf club. Therefore, casting has been employed for manufacturing such Ti-6Al-4V alloy made head, as disclosed in Japanese Patent Un-Examined Publication No.3-230845. However, as titanium is an easily oxidizable metal, casing is not able to be carried out in the atmosphere. Further, titanium is easily reacted with a casting mold, and thus extremely high technology is required, thereby eventually leading to increased costs. In addition to the foregoing, castings have a drawback of resultant inferior strength, because they can not undergo tissue-control as compared to rolled materials. In contrast, ultra plasticity working is possible for the aforesaid Ti-4.5Al-3V-2Fe-2Mo alloys, and thus high strength is more easily obtained by the alloys than by castings. However, as even the plasticity working requires special installations, and is highly time-consuming, the method is not suitable for mass production. Under the above-mentioned circumstances, beta type alloys with better working ability, such as Ti-15Mo-5Zr-3Al and Ti-15V-3Cr-3Sn-3Al, have more often come to be used. These alloys are formed by cold working to a preset thickness, and then are subjected to thermal treatment for removing distortions caused by cold working and undergoing solution treatment, thereby assembling them into a golf club head.
For related prior art, Japanese Un-Examined Patent Publication No.9-59731 discloses a titanium alloy for golf club head, said titanium alloy containing: zirconium and oxygen by the amounts in the ranges satisfying the following inequalities: the weight percentage content of Zr≧1.0(%), in which Zr+25O
2
≧5(%), and 3 X Zr+220 X O
2
≦86(%); a slight amount of at least one selected from among aluminum, tin, copper, and chromium; and titanium and inevitable impurities as the remaining components. This prior art also teaches the manufacture of a face of a golf club head by subjecting such titanium alloy to final rolling to effect 30% or more reduction in area, at 700° C. or below. In the prior art, such titanium alloy is referred to as alpha type titanium alloy. In fact, Zr is not a beta stabilized element. Further, the prior art publication refers to the difficulty in cold working in a case where a beta stabilized element is added. Accordingly, the art disclosed by this prior art publication is not intended for beta type titanium alloy.
On the other hand, Japanese Un-Examined Patent Publication No.11-19255 describes that the face member and head body member of a golf club head are each formed from beta-type titanium alloy. The prior art publication discloses a method for manufacturing a golf club head such that the face member is subjected to cold or hot forging to become plastically deformed to have a predetermined configuration. This prior art publication also describes that the face member can have a thickness of about 2.7 mm at the central portion thereof. Although this prior art teaches the use of cold or hot forging as a method of working the face member of a golf club head, it is silent with any advantage such as the improvement of durability to be resulted therefrom, only describing that any suitable methods may be selectively used for forging, irrespective of either cold or hot forging, and thus, it only refers to the types of forging as examples. In fact, cold working is generally subjected to a large deformation resistance, resulting in inferior workability, so that it is difficult to carry out. Accordingly, it is unlikely for those skilled in the art to select cold working. Further, even though the techniques disclosed by the prior art is used to cold work a beta type titanium alloy, yet it is not possible to manufacture a good club head. In other words, whilst a titanium alloy has extremely high specific tensile strength (strength/density) and corrosion resistance among practical metallic materials, and thus it has higher specific tensile strength and corrosion resistance than steel materials such as S45C, yet it has a drawback that due to its poor cold working ability, the cold working of a beta type titanium alloy is not a suitable method for manufacturing a face of a golf club head.
Whereas, Japanese Un-Examined Patent Publication No.9-215786 discloses that the face member of a golf club head is formed from a beta type titanium alloy. Specifically, this prior art publication discloses that when manufacturing the face member, a shoulder round bar is heated up to a temperature range for hot working and then die-forged to obtain a desired shape thereof, which is then subjected to direct aging treatment without solution treatment, to thereby form the face member having desired properties including desired strength. This prior art further describes that as the solution treatment is omitted after the hot die-forging, the production process is simplified, and the strength is enhanced due to the synergy of work hardening and age hardening. However, even if the material is subjected to direct aging treatment after the hot die-forging process, the strength thereof is still too small for the material to be used for that of the face member that is required to have the smallest possible thickness, and thus it is inevitably cracked due to the impact at the time of striking balls.
Also, Japanese Un-Examined Patent Publication No.10-71219 discloses a forging step in which a titanium-made material bar is heated to hot forging temperature and die-forged to form the face member, and an aging treatment step for subjecting the same to aging treatment without solution treatment after the forging step. However, if the direct aging treatment is performed after the hot die-forging step, yet the same problem as mentioned in the foregoing paragraph occurs for the same reasons.
Also, Japanese Un-Examined Patent Publication No.5-70909 discloses a method of manufacturing an aluminum alloy pipe for use with hydraulic machines, in which an aluminum alloy ingot is hot extruded, drawn, and then subjected to aging treatment. Specifically, this prior art discloses that the reduction in cross sectional area after

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for manufacturing a golf club does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for manufacturing a golf club, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for manufacturing a golf club will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3053872

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.