Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Patent
1989-12-22
1993-01-05
Moskowitz, Margaret
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
435 91, 536 245, 536 251, 436 94, C12Q 168, C12P 1934, C07H 1512, G01N 3300
Patent
active
051769964
ABSTRACT:
A method for making synthetic oligonucleotides which bind to target sequences in a duplex DNA forming colinear triplexes by binding to the major groove. The method includes scanning genomic duplex DNA and identifying nucleotide target sequences of greater than about 20 nucleotides having either about at least 65% purine bases or about at least 65% pyrimidine bases; and synthesizing synthetic oligonucleotides complementary to identified target sequences. The synthetic oligonucleotides have a G when the complementary location in the DNA duplex has a GC base pair and have a T when the complementary location in the DNA duplex has an AT base pair. The synthetic oligonucleotides are oriented 5' to 4' and bind parallel or 3' to 5' and bind anti-parallel to the about at least 65% purine strand.
REFERENCES:
patent: 4469863 (1984-09-01), Ts'o et al.
patent: 4511713 (1985-04-01), Miller et al.
patent: 4587044 (1986-05-01), Miller et al.
patent: 4667025 (1987-05-01), Miyoshi et al.
patent: 4740463 (1988-04-01), Weinberg et al.
patent: 4757055 (1988-07-01), Miller et al.
patent: 4806463 (1989-02-01), Goodchild et al.
Maniatis et al Molecular Cloning (1982) Cold Spring Harbor Press, CSH NY pp. 229-242.
Firtel et al. Proc Natl Acad Sci 76:6206-6210 (1979).
Asseline, U., et al: Nucleic acid-binding moles with high affinity and base sequence specificity: Intercalating agents covalently linked to oligodeoxynucleotides; Proc. Natl. Acad. Sci. USA, 81:3297-3301 (1984).
Bloomfield, V. A., et al; Physical chemistry of nucleic acids; Harper & Row, Publishers, Inc., New York, 322-333 (1974).
Boidot-Forget, M., et al; Site-specific cleavage of single-stranded and double-stranded DNA sequences by oligodeoxyribonucleotides covalently linked to an intercalating agent and an EDTA-Fe chelate; Gene, 72:361-371 (1988).
Boles, T. C., et al; DNA Structure Equilibria in the Human c-myc Gene; Biochemistry, 26, 367-376 (1987).
Broitman, S. L., et al; Formation of the triple-stranded polynucleotide helix, poly(A.A.U); Proc. Natl. Acad. Sci. USA, 84:5120-5124 (1987).
Chase, M.; Promise Seen in "Anti-Sense" Medicine; The Wall Street Journal, (Aug. 2, 1988).
Chu, B. C. F., et al; Derivatization of unprotected polynucleotides; Nucleic Acids Research, 11:6513-6529 (1983).
Cooney, M. et al: Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in Vitro; Science, 241:456-459 (1988).
Drinkwater, R. D., et al; Two human repetitive DNA elements: a new interspersed repeat found in the factor IX gene, and a satellite II tandem repeat sequence; Nucleic Acids Research, 14:9541 (1986).
Francois, J., et al; Sequence-specific recognition of the major groove of DNA by oligodeoxynucleotides via triple helix formation. Footprinting studies; Nucleic Acids Research, 16:11431-11440 (1988).
Harel-Bellan, A, et al; Specific inhibition of c-myc protein biosynthesis using an antisense synthetic deoxy-oligonucleotide in human T lymphocytes; The Journal of Immunology, 140-2431-2435 (1988).
Harvey, S. C., et al; DNA stem-loop structures in oligopurine-oligopyrimidine triplexes; Nucleic Acids Research, 16:11795-11809 (1988).
Kohwi, Yoshinori, et al; Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA; Proc. Natl. Acad. Sci. USA, 85:3781-3785 (1988).
Leder, A., et al; Consequences of Widespread Deregulation of the c-myc Gene in Transgenic Mice: Multiple Neoplasms and Normal Development; Cell, 45:485-495 (1986).
Lyamichev, V. I., et al; Structures of Homopurine-homopyrimidine Tract in Superhelical DNA; Journal of Biomolecular Structure and Dynamics, 3:667-669 (1986).
Matsukura, M., et al; Phosphorothioate analogs of oligodeoxynucleotides; Inhibitors of replication and cytopathic effects of human immunodeficiency virus; Proc. Natl. Acad. Sci. USA, 84:7706-7710 (1987).
Minton, K. W., et al. The Triple Helix: A Potential Mechanism for Gene Regulation; Journal of Experimental Pathology, 2:135-148 (1985).
Moffat, A. S.; Researchers Pursue "Anti-Sense" Technology in Quest for Novel Drugs and Agriproducts; Genetic Engineering News, (1988).
Moser, H. E., et al; Sequence-specific Cleavage of Double Helical DNA by Triple Helix Formation; Science, 238:645-650 (1987).
Praseuth, D., et al; Sequence-specific binding and photocrosslinking of .alpha. and .beta. oligodeoxynucleotides to the major groove of DNA via triple-helix formation: Proc. Natl. Acad. Sci. USA, 85:1349-1353 (1988).
Rajagopal, P., et al; Triple-strand formation in the homopurine:homopyrimidine DNA oligonucleotides d(G-A).sub.4 and d(T-C).sub.4 ; Nature, 339:637-640 (1989).
Stein, C. A., et al; Physicochemical properties of phosphorothioate oligodeoxynucleotides; Nucleic Acids Research, 16(8):3209-3221 (1988).
Strobel, S. A., et al; Double-Strand Cleavage of Genomic DNA at a Single Site by Triple-Helix Formation; J. Am. Chem. Soc., 110:7927-7929 (1988).
Vlassov, V. V., et al; Sequence-specific chemical modification of double-stranded DNA with alkylating oligodeoxribonucleotide derivatives; Gene, 72:13-322 (1988).
Walder, R. Y., et al; Role of RNase H in hybrid-arrested translation by antisense oligonucleotides; Proc. Natl. Acad. Sci. USA, 85:5011-5015 (1988).
Wickstrom, E. L., et al; Human promyelocytic leukemia HL-60 cell proliferation and c-myc protein expression are inhibited by an antisense pentadecadeoxynucleotide targeted against c-myc mRNA; Biochemistry, 1028-1032 (1987).
Zon, G.; Oligonucleotide Analogues as Potential Chemotherapeutic Agents; Pharmaceutical Research, 5:539-549 (1988).
Hogan Michael E.
Kessler Donald J.
Baylor College of Medicine
Chambers Scott A.
Moskowitz Margaret
LandOfFree
Method for making synthetic oligonucleotides which bind specific does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for making synthetic oligonucleotides which bind specific, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for making synthetic oligonucleotides which bind specific will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2390330