Method for making stained glass articles

Metal working – Method of mechanical manufacture – Assembling or joining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S527200, C428S038000, C156S063000, C156S277000

Reexamination Certificate

active

06357103

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
Not Applicable
REFERENCE TO A “MICROFICHE APPENDIX”
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to decorative articles which simulate the esthetic effects of stained glass and a method for producing the articles.
2. Description of the Prior Art
Although the art of leaded glass or stained glass originated prior to the 9
th
century, it did not flourish until the 12
th
century when massive new cathedrals were being built. The art of stained glass declined somewhat during the Reformation of the 16
th
century but it has been very popular since its revival by William Morris in the 19
th
century. Traditional stained glass articles consist of individually cut pieces of glass joined by soldered H-shaped lead cames. The cut pieces of glass are colored or painted and produce a design when assembled. The traditional art is labor intensive and requires great skill. Art pieces produced in this manner are usually expensive.
Methods of simulating stained glass have been devised to overcome the inherent disadvantages of traditional leaded glass articles. Most simulation methods have focused on reducing the cost of the art and on making articles that are stronger and less susceptible to deterioration. The need in stained glass simulation is to not only remedy the disadvantages of the traditional art form but also to produce realistic looking stained glass articles.
Decorative panels and articles which simulate the appearance and effect of stained glass have been described in several patents. Early simulated stained glass articles were unconvincing because the simulated cames were unrealistic in color and dimensional effect (depth). The cames were applied ‘flat’ on the substrate of the article. More recent methods have improved the came simulation and have produced more aesthetic and realistic articles. Several prior art methods from the patent literature (US) are described to illustrate the state and evolution of stained glass simulation.
Kuroda, U.S. Pat. No. 3,931,425, described a simulation method in which a sheet of plastic material is provided black, textured color lines are applied to both sides in perfect registration. The spaces between the lines on one side are distressed to give a rough surface and are colored with transparent inks. This sheet is laminated to a second, clear plastic sheet.
Melzer, U.S. Pat. No. 4,302,260, described a method of simulating stained glass by joining pieces of colored, textured (one surface) plastic with a plastic adhesive. The product is assembled on a plastic sheet and removed as a single piece after the adhesive has set.
Brodis et al, U.S. Pat. No. 4,312,688, described a simulation method in which the product was built upon a glass product such as a window. Adhesive backed lead stripping is applied to form a pattern and trimmed. Colored plastic sheeting (cellophane) is cut to shape and applied to the inner surface of the window between lead strips. Lead stripping is applied to the inner surface in registration with the strips on the outer surface.
Butler, U.S. Pat. No. 4,335,170 and U.S. Pat. No. 4,438,165, described a simulation similar to that of Brodis et al but different in that the lead strips did not divide the pane into small segments.
Goralnik, U.S. Pat. Nos. 4,217,326 and 4,343,758, described a method in which glass pieces were placed into cames formed from epoxy resin and glued into place with epoxy resin.
Holt, U.S. Pat. No. 4,127,689, described a method in which the desired art work is silk-screened onto one surface of a thin plastic substrate. A coating is applied over the silk screening to generate optical distortion. A thermosetting plastic is used+i form cames on both sides of the substrate.
Pavone, U.S. Pat. No. 4,318,946, described a simulation method in which irregularly shaped, colored plastic members are bonded to a clear substrate of the same plastic. The areas between the members are filled with a latex grout. The surface of the product can be further treated to enhance the effect.
Sellers, U.S. Pat. No. 5,039,468, described a simulation method in which cames are fist molded from a master window in silicone rubber. Glass pieces are assembled and sealed in resin cames using a polyester resin in the silicone master molds.
Polsky, U.S. Pat. No. 5,270,087, described a simulation method in which colored, transparent inks are applied to one surface of a rigid plastic subs. An opaque coating is applied to the other side. Portions of the opaque coating are ‘scratched-off’ to reveal portions of the ink patterns.
Fujita, U.S. Pat. No. 5,217,791, described a complex simulation process in which a plastic film is coated with a mixture of pigments and adhesives designed to produce specified optical characteristics. The desired image is printed over the coating using an offset press. The printing inks pass through the coating. The printed sheet simulates the appearance of stained glass.
Many of the methods used to simulate stained glass art necessitate that the cames or the colored image or both be cut from a sheet of rigid, translucent plastic or other material. Intricate, detailed images cannot be created from ‘puzzle-like’ pieces. Some methods are very complex and rival the traditional stained glass process for labor and time while others produce a sandwich of two or three layers of plastic film laminated together. These methods are not practical for small (8.5″×11″) art objects.
Thus it is an objective of the present invention to provide a method of simulating stained glass which uses images with very high detail and which does not use small pieces to form the image.
It is a further objective of the present invention to provide a method which utilizes an existing planar surface of glass as its substrate.
It is a further objective of the present invention to provide a method for simulation of stained glass that can be packaged and distributed as a complete kit.
It is a further objective of the present invention to provide a method for simulation of stained glass which does not require special skills and thus can be easily completed by the do-it-yourselfer.
SUMMARY OF THE INVENTION
The general purpose of the present invention is to provide a new method for simulating stained glass which has some of the advantages mentioned heretofore and which incorporates new, novel features that afford a stained glass simulation that is not suggested, anticipated, or implied by any of the prior art methods. This new simulation uses high resolution images, has the strength of a single pane of glass, is completely sealed, and provides from the deleterious effects of UV radiation. The invention is assembled upon the glass pane substrate of an ordinary (13.5″×11″) picture frame. The glass pane of the frame is cleaned with distilled white vinegar and dried with a lint free paper towel. The image to be used for the art object is obtained by either photographing the desired scene with a digital camera or from an existing color photograph. The image is digitized by either uploading the digital camera image into a home computer or by scanning (high resolution) the color photograph into the computer. This image is printed (color, high resolution) onto polyester film (transparency) for use in the stained glass simulation. A commercial, two part epoxy resin is mixed (1 part resin to 1 part hardener) for use. One ounce of mixed resin is applied to the glass and leveled to seal the glass to the frame. The printed transparency is placed on the glass printed side against the glass) and three ounces of mixed resin are applied to the back of the transparency. The resin is leveled to embed (encapsulate) the transparency and allowed to cure. Frame stops are installed and the product is complete.


REFERENCES:
patent: 3931425 (1976-01-01), Kuroda
patent: 4127689 (1978-11-01), Holt
patent: 4217326 (1980-08-01), Goralnik
patent: 4302260 (1981-11-01), Meltzer
patent: 4312688 (1982-01-01), Brodis et al.
patent: 4318946 (1982-0

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for making stained glass articles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for making stained glass articles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for making stained glass articles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829322

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.