Chemistry of inorganic compounds – Halogen or compound thereof – Binary compound containing metal
Reexamination Certificate
2001-07-25
2003-11-11
Bos, Steven (Department: 1754)
Chemistry of inorganic compounds
Halogen or compound thereof
Binary compound containing metal
C423S499500, C423S050000, C423S055000, C423S087000, C423S092000, C423S104000, C423S158000, C423S140000, C423S165000
Reexamination Certificate
active
06645458
ABSTRACT:
The invention relates to the manufacture of aqueous sodium chloride solutions starting with solid sodium chloride contaminated with heavy metals.
Waste of domestic or hospital origin usually contains substantial quantities of chlorinated compounds as well as heavy metals. Incineration of this waste consequently leads to the production of smoke contaminated with hydrogen chloride and heavy metals, and it is necessary to purify it before it is discharged into the atmosphere. A known technique for purifying such smoke consists in treating it, by the dry or semiwet route, with a basic sodium reagent, usually sodium bicarbonate or sodium carbonate [European Patent EP-B 0 603 218 by SOLVAY (Société Anonyme)]. The dust collected from this technique for purifying smoke contains an appreciable quantity of sodium chloride, which it is useful to upgrade for example in the form of aqueous solutions. This dust however also contains heavy metals whose presence should be avoided in aqueous sodium chloride solutions. According to a known process, the dust is dispersed in a sufficient quantity of water to dissolve the sodium chloride, and the aqueous medium thus obtained is supplemented with sodium or calcium hydroxide so as to alkalinize it and to precipitate the heavy metals in the form of metal hydroxides. The latter are then separated from the sodium chloride solution by means of filtration (European Patent EP-B 0 603 218 cited above).
An improved process has now been found for the manufacture of aqueous sodium chloride solutions starting with a solid material containing sodium chloride and heavy metals, which, all else being equal, makes it possible to obtain aqueous solutions whose degree of purity is higher than that obtained with the known process described above.
Consequently, the invention relates to a process for the manufacture of an aqueous sodium chloride solution, according to which a solid material comprising sodium chloride and heavy metals is dispersed in water, the aqueous medium thus obtained is alkalinized so as to precipitate the heavy metals in the form of metal hydroxides and the aqueous medium is then subjected to mechanical clarification. According to the invention, calcium carbonate is coprecipitated with the metal hydroxides in the aqueous medium.
In the process according to the invention, the solid material is usually in the form of a powder. Its origin is not critical. It is generally an industrial residue, for example a residue from the purification of an industrial fluid.
The solid material subjected to the process according to the invention contains sodium chloride and heavy metals. The expression heavy metals is intended to designate metals whose density is at least equal to 5 g/cm
3
, as well as beryllium, arsenic, selenium and antimony, in accordance with the generally accepted definition (Heavy Metals in Wastewater and Sludge Treatment Processes; Vol. I, CRC Press, Inc; 1987; page 2). In the context of the present invention, aluminium is associated with heavy metals.
The respective quantities of sodium chloride and heavy metals in the solid material subjected to the process according to the invention are not critical and depend on its origin. For example, in the case of dust from the treatment of a gas containing hydrogen chloride, with a basic sodium reagent, the solid material usually contains at least 10 g of sodium chloride per kg (generally from 50 to 850 g/kg) and from 5 to 80 g of heavy metals per kg. The solid material may, in addition, optionally contain other water-soluble or water-insoluble constituents such as, for example, sodium sulphate, calcium carbonate and calcium sulphate. It usually contains sodium carbonate when it is obtained from the treatment of a gas containing hydrogen chloride; with a basic alkali metal reagent.
The water should be used in a sufficient quantity to dissolve all the sodium chloride. It is not advantageous to use an excess of water.
The alkalinization of the aqueous medium is designed to insolubilize the heavy metals by precipitating them in the form of metal hydroxides. It is normally carried out by adding a basic compound to the aqueous medium. Sodium hydroxide, in the solid form or in the form of an aqueous solution, is advantageously used. The alkalinization should be adjusted so as to insolubilize the heavy metals present in the aqueous medium and it therefore depends on the heavy metals present. In practice, good results are obtained by carrying out the alkalinization so that the pH of the aqueous medium is at least equal to 8 and does not exceed 14, preferably 12, the best results being obtained when the pH is between 9 and 12.
In the process according to the invention, mechanical clarification is an operating process in which a suspension of one or more solid substances in a liquid is subjected to physical separation into at least one phase which has a high concentration of solid substance and a liquid phase which is substantially free of solid substance, with no change of state of either constituent of the aqueous suspension, in particular without evaporation or solidification of the liquid. Examples of this operating process of clarification comprise filtration, centrifugation and sedimentation followed by decantation. Filtration is the preferred process, which may be optionally combined with centrifugation or with sedimentation followed by decantation.
In the process according to the invention, clarification is designed to separate the insoluble materials (particularly the precipitate of heavy metal hydroxides) from the aqueous sodium chloride solution.
In accordance with the invention, calcium carbonate is coprecipitated with the heavy metal hydroxides. This expression is understood to mean that calcium carbonate precipitates in the aqueous medium, at the same time as the heavy metal hydroxides.
Any appropriate means may be used to precipitate the calcium carbonate. According to a preferred embodiment of the invention, the calcium carbonate is precipitated by reacting sodium carbonate with calcium chloride and optionally other soluble salts of calcium (for example calcium sulphate) in the aqueous medium. In this embodiment of the invention, the respective quantities of calcium chloride and sodium carbonate are preferably close to the stoichiometric quantities necessary to form calcium carbonate by reaction.
According to a first variant of this embodiment of the process, the calcium chloride and the sodium carbonate are introduced simultaneously into the aqueous medium. According to another preferred variant of the process, the solid material contains sodium carbonate and calcium chloride is introduced into the aqueous medium. In this variant of the invention, the quantity of sodium carbonate in the solid material will depend on its origin. It is generally less than the quantity of sodium chloride and usually between 5 and 250 g per kg of solid material. In this variant of the invention, there is advantageously used a quantity of calcium chloride which is at least equal to the stoichiometric quantity necessary to form calcium carbonate by reaction with the entire sodium carbonate in the solid material. This variant of the process according to the invention applies in particular to the case of dust which is formed by subjecting smoke contaminated with hydrogen chloride and heavy metals to a treatment, by the dry or semiwet route, with a basic reagent comprising sodium carbonate or sodium bicarbonate. It also applies to the solid residues which are obtained by subjecting such smoke to washing with an aqueous sodium hydroxide solution.
In one particular embodiment of the process according to the invention, a hydraulic binder is added to the aqueous medium before clarification. The hydraulic binder may, for example, comprise lime, Portland cement clinker or Portland cement. Portland cement clinker is preferred. The role of the hydraulic binder is to form concrete with the precipitate collected from the clarification and from the water. The quantity of hydraulic binder which it is necessary to use wi
Bos Steven
Larson & Taylor PLC
Solvay ( Societe Anonyme)
LandOfFree
Method for making an aqueous sodium chloride solution does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for making an aqueous sodium chloride solution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for making an aqueous sodium chloride solution will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3129240