Radiation imagery chemistry: process – composition – or product th – Stripping process or element – Forming nonplanar image
Reexamination Certificate
2000-04-19
2001-02-20
Schilling, Richard L. (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Stripping process or element
Forming nonplanar image
C430S256000, C430S302000, C430S327000, C430S329000, C430S330000, C430S348000, C430S935000, C430S964000
Reexamination Certificate
active
06190828
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method for making a lithographic printing master by on-press coating of an image recording composition.
BACKGROUND OF THE INVENTION
Rotary printing presses use a so-called master such as a printing plate which is mounted on a cylinder of the printing press. The master carries an image which is defined by the ink accepting areas of the printing surface and a print is obtained by applying ink to said surface and then transferring the ink from the master onto a substrate, which is typically a paper substrate. In conventional lithographic printing, ink as well as an aqueous fountain solution (also called dampening liquid) are supplied to the printing surface of the master, which is referred to herein as lithographic surface and consists of oleophilic (or hydrophobic, i.e. ink accepting, water repelling) areas as well as hydrophilic (or oleophobic, i.e. water accepting, ink repelling) areas.
Printing masters are generally obtained by the so-called computer-to-film method wherein various pre-press steps such as typeface selection, scanning, colour separation, screening, trapping, layout and imposition are accomplished digitally and each colour selection is transferred to graphic arts film using an image-setter. After processing, the film can be used as a mask for the exposure of an imaging material called plate precursor and after plate processing, a printing plate is obtained which can be used as a master.
In recent years the so-called computer-to-plate method has gained a lot of interest. This method, also called direct-to-plate method, bypasses the creation of film because the digital document is transferred directly to a plate precursor by means of a so-called plate-setter.
In the field of such computer-to-plate methods the following improvements are being studied presently:
(i) On-press imaging. A special type of a computer-to-plate process involves the exposure of a plate precursor while being mounted on a plate cylinder of a printing press by means of an image-setter that is integrated in the press. This method may be called ‘computer-to-press’ and printing presses with an integrated image-setter are sometimes called digital presses. A review of digital presses is given in the Proceedings of the Imaging Science & Technology's 1997 International Conference on Digital Printing Technologies (Non-Impact Printing 13). Computer-to-press methods have been described in e.g. EP-A 770 495, EP-A 770 496, WO 94001280, EP-A 580 394 and EP-A 774 364. Typical plate material used in computer-to-press methods are based on ablation. A problem associated with ablative plates is the generation of debris which is difficult to remove and may disturb the printing process or may contaminate the exposure optics of the integrated image-setter. Other methods require wet processing with chemicals which may damage or contaminate the electronics and optics of the integrated image-setter and other devices of the press.
(ii) On-press coating. Whereas a plate precursor normally consists of a sheet-like support and one or more functional coatings, computer-to-press methods have been described wherein a composition, which is capable to form a lithographic surface upon image-wise exposure and optional processing, is provided directly on the surface of a plate cylinder of the press. EP-A 101 266 describes the coating of a hydrophobic layer directly on the hydrophilic surface of a plate cylinder. After removal of the non-printing areas by ablation, a master is obtained. However, ablation should be avoided in computer-to-press methods, as discussed above. U.S. Pat. No. 5,713,287 describes a computer-to-press method wherein a so-called switchable polymer such as tetrahydro-pyranyl methylmethacrylate is applied directly on the surface of a plate cylinder. The switchable polymer is converted from a first water-sensitive property to an opposite water-sensitive property by image-wise exposure. The latter method requires a curing step and the polymers are quite expensive because they are thermally unstable and therefore difficult to synthesise.
(iii) Thermal imaging. Most of the computer-to-press methods referred to above use so-called thermal or heat-mode materials, i.e. plate precursors or on-press coatable compositions which comprise a compound that converts absorbed light into heat. The heat which is generated on image-wise exposure triggers a (physico-)chemical process, such as ablation, polymerisation, insolubilisation by cross-linking of a polymer, decomposition, or particle coagulation of a thermoplastic polymer latex. This heat-mode process then results in a lithographic surface consisting of ink accepting and ink repelling areas.
(iv) The development of functional coatings which require no wet processing or may be processed with plain water, ink or fountain is another major trend in plate making. Such materials are especially desired in computer-to-press methods so as to avoid damage or contamination of the optics and electronics of the integrated image-setter by contact with the processing liquids. WO 90002044, WO 91008108 and EP-A 580 394 disclose such plates, which are, however, all ablative plates having a multi-layer structure which makes them less suitable for on-press coating. A non-ablative plate which can be processed with plain water is described in e.g. EP-A 770 497 and EP-A 773 112. Such plates also allow on-press processing, either by wiping the exposed plate with water while being mounted on the press or by the ink or fountain solution applied during the first runs of the printing job.
A computer-to-press method that is characterised by most of the above advantages has been disclosed in EP-A 698 488. An oleophilic substance is image-wise transferred from a foil to a rotary press cylinder by melting said substance locally with a laser beam. The strip-shaped transfer foil has a narrow width compared to the cylinder and is translated along a path which is parallel to the axis of the cylinder while being held in close contact with the surface of the cylinder so as to build up a complete image on that surface gradually. As a result, this system is rather slow and requires a long downtime of the printing press, thereby reducing its productivity.
EP-A 802 547 describes an on-press coating method wherein an aqueous liquid, comprising a hydrophilic binder, a compound capable of converting light to heat and hydrophobic thermoplastic polymer particles, is coated on the plate cylinder so as to form a uniform, continuous layer thereon. Upon image-wise exposure, areas of the coated layer are converted into an hydrophobic phase, thereby defining the printing areas of the printing master. The press run can be started immediately after exposure without any additional treatment because the layer is processed by interaction with the fountain and ink that are supplied to the cylinder during the press run. So the wet chemical processing of these materials is ‘hidden’ to the user and accomplished during the first runs of the printing press. A problem associated with this method is that the wet coating step involves a risk of damaging or contaminating the optics and electronics of the integrated image-setter. In addition, the method produces an insufficient coating quality, characterised by a low consistency and a high frequency of coating artefacts. The quality of the wet-coating step can only be improved by installing a complex and sophisticated coating apparatus on the press.
OBJECTS OF THE INVENTION
It is an object of the present invention to provide a simple, consistent and high-quality on-press coating method for making a printing master which does not require a wet coating or processing step and which can be carried out at a sufficient speed so as to reduce downtime of the printing press. This object is realised by the method defined in claim
1
. Specific features for preferred embodiments of the invention are disclosed in the dependent claims.
Further advantages and embodiments of the present invention will become apparent from the following descr
Vermeersch Joan
Verschueren Eric
Agfa-Gevaert N.V.
Breiner & Breiner
Schilling Richard L.
LandOfFree
Method for making a lithographic printing master does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for making a lithographic printing master, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for making a lithographic printing master will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2576742