Method for making a dental mill blank assembly

Plastic and nonmetallic article shaping or treating: processes – Dental shaping type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S138000, C264S219000, C264S266000, C264S271100, C264S328100, C264S328800, C264S494000, C264S019000

Reexamination Certificate

active

06669875

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention broadly relates to a mill blank assembly used in the field of dentistry to create an inlay, onlay, crown, veneer, coping, bridge, bridge framework, implant, implant abutment or other restoration or restoration component. More specifically, the present invention is directed to a mill blank assembly that is especially adapted for use with computer-aided design and machining processes to create a dental prosthesis. The present invention is also directed to a method for making a dental mill blank assembly.
2. Description of the Related Art
A variety of dental procedures are known for replacing or repairing damaged, weakened or missing tooth structures. For example, a dental prosthesis commonly known as a filling is often used to fill cavities in teeth caused by tooth decay or caries. Somewhat larger prosthetics also used to fill cavities are known as inlays and onlays. Fillings, inlays and onlays may also be utilized to restore the shape of teeth that have been chipped or broken.
Other types of dental prosthetics include bridges, full crowns and partial crowns. Typically, these prosthetics are much larger than fillings and as a result are often more visible in the oral cavity. Full and partial crowns may be supported by remaining portions of the original tooth structure and/or by a post extending toward the bony region of the jaw. Bridges, on the other hand, are structures that connect to adjacent tooth structure and provide an artificial tooth or tooth crown to replace corresponding, missing structure.
In the past, fillings and some inlays and onlays were often made of a silver-colored metal alloy known as amalgam due to its relatively long life and relatively low cost. Another advantage offered by amalgam is that it allows a dental practitioner to fit and fabricate the restoration during a single session with a patient. Unfortunately, amalgam is not considered aesthetic since its silver color sharply contrasts to the appearance of natural teeth in the oral cavity.
Another material used for dental prosthetics, and particularly for larger inlays and fillings, is gold. However, like amalgam, the color of gold sharply contrasts with the appearance of natural teeth and is highly visible in the oral cavity. In addition, gold is relatively expensive in comparison to other dental materials.
As a consequence, many dental practitioners are increasingly turning to ceramic or polymer-ceramic composite materials for use to make dental prosthetics. Dental ceramic materials and dental polymer-ceramic composite materials can provide an appearance that closely matches the appearance of natural teeth. Such materials are also available in various color shades so that the practitioner can select a color that closely matches the color of adjacent tooth structure.
Dental polymer-ceramic composite materials for use as restoratives are available from various manufacturers in paste-type form. Such materials are often supplied in capsules that are releasably received in a receptacle of a hand-held dispenser. The dispenser typically includes a lever that, when depressed, extrudes a quantity of the material from the capsule and directly onto the tooth structure. The material includes a polymerization initiator that serves to harden the material once it has been placed on the tooth structure and shaped by the practitioner to resemble natural tooth structure.
A variety of techniques may be employed to help shape the unhardened restorative paste to a desired configuration once dispensed onto the patient's tooth structure. For example, if the material is used to fill a relatively small cavity, the material can be dispensed directly into the cavity and then shaped by hand. A hand instrument such as a dental pick is used to help pack the material in the cavity and to blend the external surface of the paste with adjacent, external portions of the patient's tooth. As another example, if a portion of one or more sides of a tooth is to be restored, the practitioner may elect to use a matrix band or sectional matrix band next to the tooth structure to help hold the material in place while it hardens. The matrix band or sectional matrix band serves as a formwork, similar to formwork used in concrete, to help hold the material in place and also to help define an outer surface of the composite material while it hardens.
However, larger prosthetics are often fabricated outside of the oral cavity and then placed in the patient's oral cavity once completed. For these types of prosthetics, an impression is often taken of the patient's tooth structure of interest along with adjacent regions of the gingiva, using an elastomeric impression material that provides a negative physical image of the tooth structure and gingival region. Next, a cast positive model is made by pouring a quantity of plaster of Paris into the impression and allowing the plaster of Paris to harden. The resulting plaster of Paris or “stone” model is then used in the laboratory to make a prosthetic that is ultimately transferred to the patient's oral cavity.
The laboratory procedure for making the prosthetic may be somewhat involved, depending on the type of prosthetic that is needed. In one method, for example, a wax replica of the desired crown is built on the stone model. The wax replica is then embedded in a refractory investment material and fired to create another negative physical image of the oral structure of interest. Porcelain is then forced into the investment material under pressure and heat in order to make the crown.
However, a number of disadvantages arise when the foregoing procedure is followed to make a crown. In such a procedure, the patient typically travels to the practitioner's office two times: a first time to enable an impression to be taken, and a second time a few days later after the stone model has been made and the crown has been fabricated in the dental laboratory. Moreover, if the completed crown must be returned to the laboratory because its shape, fit or appearance is not satisfactory, the patient is often then required to return to the dental office for a third visit. In many dental practices, the crown is not made in a laboratory that is part of the office but is instead sent to a central laboratory in another area of the town or region.
Furthermore, the fabrication of custom dental crowns and other prosthetics by hand from stone models is an art that involves a high degree of skill and craftsmanship, as well as intensive labor. Moreover, prosthetics that are placed in the anterior regions of the patient's oral cavity are often highly visible. It is widely considered difficult to make a porcelain prosthetic that exactly matches the translucency and color of natural teeth.
Recently, increased interest has been directed toward the use of computer automated machinery for fabricating dental prosthetics, using far less labor than prior methods such as the method for making a crown described above. For example, several systems are known for collecting a set of electronic data that is representative of the patient's tooth structure of interest. The data is then used by an automated mechanical milling machine (such as computer-aided milling machine) to fabricate a prosthetic that, when completed, closely matches the shape of natural tooth structure.
Examples of computer-aided milling machines used in the field of dentistry include the CEREC 2™ and CEREC 3™ machines available from Sirona Dental Systems of Bensheim, Germany, the DICEM™ machine from Dentronix, the VITA CELAY™ machine from Vita Zahn Fabrik of Bad Sackingen, Germany, the PRO-CAM™ machine from CadCam Ventures, of Dallas, Tex. and the PROCERA ALL CERAM™ machine from Nobel Biocare USA of Westmont, Ill. U.S. Pat. Nos. 4,837,732, 4,776,704 and 4,575,805, as well as PCT Patent Application No. WO 96/37163 also disclose systems for making dental prosthetics using computer-aided milling machines.
The fabrication of a dental prosthesis using a computer-aided machining

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for making a dental mill blank assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for making a dental mill blank assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for making a dental mill blank assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3107487

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.