Printing – Print plate feeding or delivering
Reexamination Certificate
2000-12-14
2001-07-17
Hilten, John S. (Department: 2854)
Printing
Print plate feeding or delivering
C101S415100, C101S409000, C101S485000, C271S082000, C271S277000
Reexamination Certificate
active
06260482
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to attaching a plate to a rotatable drum and, more particularly, to conveniently attaching plates of various sizes to the drum of a so-called external-drum imagesetter or platesetter, by means of movable dynamic clamps, such that enable it to operate even at very high rotation speeds.
Imagesetters, namely marking engines for plotting images on plates or sheets of film, of the so-called external-drum type, are known in the art. Typically, a sheet is attached to the outer surface of a rotating drum and held in contact with the surface by a vacuum system, which has orifices distributed over the surface. Often, such an imagesetter is required to handle sheets of various sizes. U.S. Pat. No. 5,383,001 to Bosy addresses such a need, by providing a suitable design of the vacuum system.
External-drum platesetters are a particular category of external-drum imagesetters, wherein the image is plotted on a printing plate. Printing plates are generally made of metal and therefore they are stiffer than films and their mass per unit area is much higher. Thus, when a plate is attached to the drum, it requires a greater force to keep it in contact with the drum's surface at any given rotational speed, to counteract the centrifugal force, than is required by a film. Consequently, a vacuum system to hold plates on the rotating drum must be more efficient and more powerful than that used for holding films. However, even with a powerful vacuum system, there is a danger of failure, due to a bend or a bulge at the edge of the plate or due to a failure in the vacuum system itself. Moreover, above a certain rotational speed the centrifugal force per unit area may exceed the difference between atmospheric pressure and the actual vacuum pressure (which, in turn, has a practical lower limit), thus rendering such a plate attachment system, solely based on vacuum, ineffectual. In such a system failures may cause the entire plate to fly off the drum by centrifugal action—which would be disastrous for the entire machine. Therefore platesetters require mechanical attachment means—either to assist the vacuum system and guard against drastic failure, or as the main holding means, possibly still aided by vacuum. One common and useful such means is clamps mounted on the drum and operative to hold down the edges of the plate.
Clamps and grippers for holding a plate onto a rotatable drum have been known in the art. For example, clamps (also called grippers) are generally used in offset printing presses to hold the printing plate onto a cylinder. During operation, centrifugal forces act to cause a pulling force on each edge of the plate, such that tends to pull the edge from the clamp. Therefore in printing presses, clamps are designed to exert enough gripping force to exceed that required for countering the centrifugally induced pulling force, at maximum expected rotational speed, by a safety margin. Additionally, the gripping force of the clamps must exert a positive stretching force on the plate, in order to assure contact between the plate and the cylinder over its entire surface, as well as to counter the drag forces exerted on the plate by external rollers and cylinders that are in contact with it during the printing operation. Such clamps are disadvantageously cumbersome for mounting on platesetters and, moreover, difficult to activate (i.e. to open for accommodating the plate), because they must include either a heavy bolting or leveraging mechanism or a very strong spring-loading mechanism.
U.S. Pat. No. 3,203,074 describes an improved clamp, in which the gripping and stretching forces increase by centrifugal action in proportion to the rotational speed. A clamp with such a centrifugal action (also termed dynamic clamp) may overcome the disadvantages discussed in the previous paragraph. U.S. Pat. No. 4,250,810 discloses a further improved clamp with centrifugal action, whereby the gripping and stretching forces can be independently adjusted.
It is noted that in platesetters, there usually is also a vacuum system, which assures contact between the plate and the drum over its entire surface, and that therefore no stretching force, but only a gripping force, is required at the edges of an attached plate. U.S. Pat. No. 5,335,046 discloses a clamp for the drum of a platesetter with a mechanism that centrifugally induces a gripping force. There is a row of such clamps for the leading edge and another one for the trailing edge. The mechanism includes a weight, connected to the clamp by a rod, located inside the drum near the opposite surface. The clamp may be opened by means of a piston and cylinder assembly, activated by supplied pressurized air. The clamp mechanism of the '046 patent has two serious drawbacks: (1) It is relatively complicated, with a relatively large number of parts, and thus is expensive to manufacture. (2) It does not conveniently accommodate plates of various sizes. The secondly listed drawback also applies to other types of clamps of prior art, such as those discussed hereabove. The '046 patent does disclose the possibility of providing a row of trailing edge clamps for each plate size; however, such an arrangement is even more expensive and, furthermore, does not accommodate small variations in plate size; moreover, it does not provide for mounting a plurality of plates peripherally around the drum, in the case of small plates, thus detracting from productivity.
Associated with the manner of clamping plates to the drum is the manner of loading them onto the drum and of unloading them following the plotting operation—whether manually or by automatic mechanisms. Most systems of prior art are limited in the loading- and unloading configurations practically possible, generally enabling loading only upon, say, clockwise rotation of the drum and, correspondingly, unloading—only upon counterclockwise rotation of the drum. This places constraints on the design of loading- and unloading mechanisms and on their placement within the machine. More freedom in such design and placement may, in many cases, be advantageous.
There is thus a widely recognized need for, and it would be highly advantageous to have, a clamping system, for attaching a plate to a rotatable drum, that is adaptable to any plate size, possibly allowing the attaching of multiple plates, of various sizes, and that enables loading and unloading plates upon rotation of the drum in either direction.
SUMMARY OF THE INVENTION
The present invention successfully addresses the shortcomings of the presently known configurations by providing an inexpensive dynamic clamping system, for attaching plates of various sizes to a rotatable drum, such as that of a platesetter, so that they are firmly gripped at any rotational speed.
The present invention discloses a novel design of a clamp, which allows placing it at any position around the drum, to accommodate any length of plate, and to be anchored at that position with a force that increases by centrifugal action. The design of the clamp is, moreover, such that the gripping force exerted by it on the edge of the plate likewise increases with the rotation speed of the drum by centrifugal action. The present invention further discloses a novel way of using such clamps to load and unload plates, to and from the drum, in the same general direction, thus enabling more practical configurations for feeding and disposing plates.
More specifically and according to a preferred embodiment, the clamp of the present invention comprises a gripper that is attached to the drum by means of a hinge. The largest part of the gripper consists of a body that extends substantially to one side of the pivot axis of the hinge. The portion of the gripper that extends to the other side of the pivot axis is relatively short and at its end is a tip, operative to press an edge of the plate onto the underlying surface of the drum. A spring is operative to provide a static force for the tip's pressure on the plate. During drum rotation, centrif
Beres Moshe
Halup Nir
Solomon Yehuda Barnes
Creoscitex Corporation LTD
Friedman Mark M.
Grohusky Leslie J.
Hilten John S.
LandOfFree
Method for loading and unloading plates to external drum... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for loading and unloading plates to external drum..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for loading and unloading plates to external drum... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2522468