Incremental printing of symbolic information – Ink jet – Combined
Reexamination Certificate
2001-05-23
2003-01-21
Barlow, John (Department: 2853)
Incremental printing of symbolic information
Ink jet
Combined
C156S277000, C156S247000
Reexamination Certificate
active
06508527
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method of color proofing, and in particular, to a method of preparing images using a method which creates pre-press proof to simulate the printed image, and more specifically to creating a pre-press proof simulating printing on thin plastic.
BACKGROUND OF THE INVENTION
Pre-press proofing is a procedure that is used primarily by the printing industry for creating representative images of printed material. In the printing industry, pre-press color proofs are used to check for color balance, control parameters and other important image quality requirements, without the cost and time that is required to actually produce printing plates, set up a printing press and produce an example of an representative image, which would result in higher costs and a loss of profits that would ultimately be passed on to the customer.
To create a pre-press proof, first an original image is separated into individual color separations or digital files. The original image is scanned and separated into the three subtractive primaries and black. Typically, a color scanner is used to create the color separations or digital files and in some instances more than four, color separations or digital files are used. Although there are several ways used in the printing industry to create a pre-press proof from the color separations or digital files they are generally one of three types. The first method is a color overlay system that employs the representative image on a separate base for each color, then the image is overlaid on each other to create a pre-press proof. The second method is a single integral sheet process in which the separate colors for the representative image are transferred one at a time by lamination onto a single base. The third is a digital method in which the representative image is produced directly onto a receiver stock, or onto an intermediate sheet and then transferred by lamination onto a receiver stock from digital files.
The representative image to be laminated can be, but is not limited to being created on a commercially available Kodak image processing apparatus, depicted in commonly assigned U.S. Pat. No. 5,268,708, which describes an image processing apparatus having half-tone color imaging capabilities. The above-mentioned image processing apparatus is arranged to form a representative image onto a sheet of thermal print media. In that process, dye from a sheet of dye donor material is transferred to the thermal print media, by applying a sufficient amount of thermal energy to the dye donor sheet material to form the representative image. The image processing apparatus is comprised generally of a material supply assembly consisting of a lathe bed scanning subsystem. The scanning subsystem includes: a lathe bed scanning frame, translation drive, translation stage member, printhead, imaging drum, and media exit transports.
The operation of the image processing apparatus comprises: metering a length of the thermal print media (in roll form) from the material supply assembly. The thermal print media is then measured and cut into sheet form of the required length and transported to the imaging drum, registered, wrapped around and secured onto the imaging drum. Next, a length of dye donor material (in roll form) is also metered out of the material supply assembly, then measured and cut into sheet form of the required length. It is then transported to the imaging drum and wrapped around the imaging drum utilizing a load roller which is described in detail, in commonly assigned U.S. Pat. No. 5,268,708, such that it is superposed in the desired registration with respect to the thermal print media (which has already been secured to the imaging drum).
After the dye donor sheet material is secured to the periphery of the imaging drum, the scanning subsystem or write engine provides the imaging function. This imaging function is accomplished by retaining the thermal print media and the dye donor sheet material on the imaging drum while it is rotated past the printhead. The translation drive traverses the printhead and translation stage member axially along the axis of the imaging drum, in coordinated motion with the rotating imaging drum. These movements combine to produce the representative image on the thermal print media.
Once a representative image has been formed on the thermal print media, the dye donor sheet material is then removed from the imaging drum. This is accomplished without disturbing the thermal print media that is beneath it. The dye donor sheet material is then transported out of the image processing apparatus by means of the material exit transport. Additional dye donor sheet materials are sequentially superimposed with the thermal print media on the imaging drum. These materials are then imaged onto the thermal print media as previously mentioned, until the representative image is on the thermal print media. The completed representative image formed thereon is then unloaded from the imaging drum and transported by the receiver sheet material exit transport to an exit tray in the exterior of the image processing apparatus.
After a representative image has been formed on the thermal print media as previously described, it is then transferred to the receiver stock such that the pre-press proof is representative of an image would be printed on a printing press. A Kodak Laminator as described in U.S. Pat. No. 5,478,434 can be used to bond or laminate the representative image as a part of a color proofing system, but this invention is not limited to the use of this device. U.S. Pat. No. 5,203,942 describes a Kodak Laminator that employs a lamination/de-lamination system as applied to a drum laminator and pending U.S. patent application Ser. No. 09/676,877 describes a Kodak Laminator that employs endless belts incorporated into the lamination apparatus. For the purpose of this patent application the laminator described in pending U.S. patent application Ser. No. 09/676,877 will be used. It should be noted that the present invention described in this disclosure is not limited to a Kodak Laminator or type of laminator referenced above.
Generally laminating a pre-press proof is a two-pass process. For the first step, a sheet of pre-laminate, which has a pre-laminate support layer and an encapsulation or protective layer, is placed on top of a receiver sheet, which is also called “receiver stock” in the industry. This construction of multiple layers is a lamination sandwich, which is feed into the laminator. Once the lamination sandwich exits the laminator the pre-laminate support layer is peeled away from he now pre-laminated receiver stock.
For the second pass, the imaged thermal print media with the representative image formed thereon is placed on the pre-laminated receiver stock with representative image face down on the pre-laminated receiver stock and fed into the laminator. After the lamination sandwich has exited the laminator the thermal print support layer is peeled away, leaving the completed pre-press proof simulating an image produced on a printing press.
The above-described lamination method works well for laser, thermal, and ink jet pre-press proofs on most materials. However, on thin plastics, it is very difficult and sometimes not possible, to laminate an image. Subsequently, there exists a need to simulate an image on thin plastic materials, such as a bread wrapper.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a method for laminating a pre-press proof to simulate printing on thin plastic.
One method of the invention involves laminating a pre-press proof to simulate printing on thin plastic materials consisting of the steps of: creating an imaged receiver sheet comprising: an image, a first thermal print layer, and a first support layer; having a first support base, a first aluminized layer, and a first release layer; laminating an imageless receiver sheet comprising a second thermal print layer, and said second support layer having; a second support base, a second aluminize
Barlow John
Buskop Law Group
Eastman Kodak Company
Liang Leonard
LandOfFree
Method for laminating a pre-press proof to simulate printing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for laminating a pre-press proof to simulate printing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for laminating a pre-press proof to simulate printing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3005533