Method for interpreting hand drawn diagrammatic user...

Image analysis – Pattern recognition – On-line recognition of handwritten characters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S215000, C707S793000

Reexamination Certificate

active

06411732

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to controlling a device, particularly a computing device, through hand drawn markings on a whiteboard or blackboard device. More specifically, the invention relates to image analysis techniques for interpreting marks for purposes of controlling devices.
BACKGROUND OF THE INVENTION
In collaborative working environments, several users frequently wish to view and manipulate displayed information simultaneously. Whiteboards and Blackboards (hereafter referred to as “Boards”) are widely used to maintain hand drawn textual and graphic images on a “wall-size” surface. The Board medium offers certain properties that facilitate a variety of interactive work practices: markings are large enough to be viewed by several people; markings can be edited by erasing and redrawing; the surface is immobile, so does not get lost, crumpled, torn, or blown by wind; the surface is readily erased, is completely reusable, and (practically) does not wear out. However, one drawback to using a Board is that information is not easily transferred to other media. Thus, it is not currently possible to hold a conversation with someone while maintaining a record of the conversation in text and graphics on a Board and then quickly, easily, and automatically transfer the record to paper or other portable and storable medium.
Existing methods for accomplishing this task are cumbersome, time-consuming, and inconvenient. One can simply transcribe by hand, onto paper, any or all of the text and graphics residing on the Board. This can be time-consuming, and suffers from errors due to mistakes in human reading and writing. Or, one can photograph the Board with a camera. This requires having a camera at hand, introduces the delay of developing the film, can be expensive if an “instant” camera is used, and is subject to poor quality rendition due to improper focus and exposure. A camera further usually produces an image of greatly reduced size that can be difficult to read.
Alternatively, “wall-size” sheets of paper, such as poster pads, lead to a relatively permanent and portable record of what was written, but these sheets of paper are large and cumbersome, and do not permit erasure during image creation.
A copy-board device provides a writing surface which can be transcribed into paper hardcopy, but these are currently conceived as conspicuous portable whiteboards that displace rather than leverage existing, built-in Boards.
The solutions discussed above further do not aid in transferring the image from the Board into an electronically usable form.
Concurrently filed U.S. patent application Ser. No. (Attorney Docket No. D/94266) offers motivations and specific technical details for a device to transcribe marks on a Board into electronic form. In summary, a video camera is mounted on a pan/tilt head. High resolution tiles are obtained by zooming in the camera on patches of the image. These are later pieced together to form a full size high resolution composite image. Perspective distortion, effects of uneven lighting, and tile overlap are handled by image processing operations.
Such a transcription device is useful because an electronic version of a Board image provides variety and flexibility in the further use of the image data. For example, an electronic image can be hardcopied, transmitted by fax, stored to a file, transferred to an electronic workstation, or projected onto a screen. Moreover, prior to any of these operations the image itself may be processed, for example select out just a region of the image, to select just certain colors, to enhance or rectify the line work, to reorder items in a list, and so forth.
The wealth of operations made available by the fundamental ability to transcribe a Board image raises the issue of control: How is the user to specify operations to be done, and when?
Since the Board transcription and image processing operations are computer-based, one possibility is for users to retire to their computers in order to control these functions. This solution is undesirable for several reasons. First, it forces users to break the cadence of their work at the Board in order to address a computer console. Second, either a console must be provided at the Board location, or else users must travel some indeterminate distance to where one is available. Third, many Board users are likely to be unfamiliar and/or uncomfortable either with computers in general, or else with the particular keyboard and mouse commands necessary to operate the program.
A second type of user interface consists of a dedicated control panel mounted adjacent to the Board. If the control panel consists of labeled buttons, these can be associated with a modest set of possible operations such as directing the transcribed bitmap to one of a handful of printers or file directories. Greater flexibility would be obtained by including a keyboard with the control panel, but this begins to present a daunting edifice to novice users. Nonetheless, for some incarnations of a Board transcription device a dedicated control panel is probably appropriate.
In the system of the present invention, however, a third alternative exists which is in several ways ideally suited for seamless creation, capture, and electronically mediated use of images originating on a whiteboard. The user interface is to consist of marks drawn by the user on the Board itself. For example, in the simplest case the user might draw a special “button” symbol, and then draw a check mark inside when the button is to be “pressed.” The system, knowledgeable about buttons, would act upon the data based on the button press. Enhanced functionality may be achieved by annotating the button symbol with further directives, or by specifying different kinds of button for different operations.
The previously described interface does not eliminate the need for users to possess knowledge of how to communicate with the system in this diagrammatic fashion, but this knowledge may be more accessible and more easily assimilated by many Board users than any control panel or computer console based interface.
A diagrammatic interface exploits the user's existing skills in drawing on the Board, and furthermore can offer extremely simple access to basic functionality and introduce incrementally the greater diagrammatic complexity required to fine tune greater functionality. Finally, a diagrammatic interface consisting of marks drawn on the Board itself is best suited to providing spatial control directives, such as to extract a region of the image.
A diagrammatic user interface to a Board transcription system hinges on the ability of a computer program successfully to interpret marks on the Board. An additional advantage of the present invention includes tolerance to variability and spurious marks made by a human user.
Relatively crude yet effective basic functionality can be had by the application of very simple image processing techniques. The “BrightBoard” system, described in “Controlling Computers by Video” by Quentin Stafford-Fraser of EuroPARC, employs a video camera pointed at a fixed position on the board. User-experts execute a graphical program at a computer console to denote special regions of the board to serve as “sensitive locations,” which are typically the interiors of buttons drawn on the board. Functionality is associated with sensitive regions at setup time. Then, in operation, a simple routine runs continuously to measure the net pixel lightness of the sensitive region, which is assumed to cross a threshold when a dark enough mark is made within it.
The image analysis techniques used in the BrightBoard system provides a basic level of control via marks on the Board, depending on the number of sensitive regions one wishes to define. However there are several drawbacks. First, the sensitive regions must be set up in advance and this Board space reserved for the system until the setup configuration is modified. Second, the functionality associated with simple button toggle is limited. Third, the detection of bu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for interpreting hand drawn diagrammatic user... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for interpreting hand drawn diagrammatic user..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for interpreting hand drawn diagrammatic user... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2970974

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.