Method for inserting an intracranial catheter and for...

Surgery – Diagnostic testing – Measuring fluid pressure in body

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S164010, C604S170020, C604S264000, C604S528000, C604S533000, C604S540000

Reexamination Certificate

active

06210346

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a catheter assembly for monitoring intracranial fluid pressure and removing intracranial fluid, and a method of use.
2. Description of the Prior Art
The skull is a bony housing of fixed volume containing three types of matter—blood, brain and cerebrospinal fluid—each of which occupies a portion of that volume. If the portion of the volume of one of the three increases without a concomitant fall in the portions of the other two, the intracranial pressure increases. Because the brain has a limited capacity to adapt to increases in intracranial volume, once the limit has been met, small increases in volume cause significant increases in intracranial pressure.
Maintaining cerebral blood flow to provide adequate oxygen and glucose to the brain is critical. However, an increase in the volume of the brain or of cerebral spinal fluid as the result of trauma, and the like, correspondingly constricts the flow of blood and can stop it completely if the increase in fluid is large enough to herniate the brain at the base of the skull. In such cases, death results.
Because it is not practical to monitor cerebral blood flow at the bedside, an algorithm based upon the relationship between mean arterial pressure, intracranial pressure and the cerebral perfusion pressure is used to calculate blood flow in the brain (CPP=MAP−ICP). Thus, a satisfactory means for monitoring intracranial pressure by placement of a pressure transducer into the intraventricular, subarachnoid or intraparentchymal spaces is of utmost importance to the management of head injury cases and has long been sought.
Assemblies for monitoring pressure at various locations within the body are known. The earliest pressure monitoring devices utilize a pressure sensitive diaphragm in contact with a column of sterile fluid contained within a catheter inserted into the blood vessel, the brain, or other area containing a fluid pressure of interest. Pressure exerted by the fluid, for instance the cerebrospinal or cephalorachitic liquid, is transmitted through the fluid column within the catheter to an external pressure transducer that transforms the pressure signal into an analog or digital form suitable for readout on a monitoring device, such as that commonly used to monitor blood pressure. However, pressure monitoring devices that utilize a column of fluid are easily contaminated with bacteria or air bubbles. Air bubbles in the line distort the pressure readings and bacterial contamination of the fluid may inadvertently expose the patient to sepsis.
The fluid coupled systems used to monitor intracranial pressure access the compartments of the brain by means of a ventricular catheter or bolts placed through the skull. Since the pressures to be monitored are relatively low (0-50 mm Hg), the hydrostatic effects of the fluid column can compromise the readings. Additionally, the fluid column can affect the frequency response of the system.
To eliminate the risks and disadvantages inherent in catheters employing a fluid column for transmitting the pressure reading, improved pressure monitoring devices have been developed that couple the pressure sensitive diaphragm located at the distal end of the catheter with an electrical or optical means for generating a pressure signal and transmitting it to the proximal end of the catheter, and thence to the pressure transducer and monitor. The electrical pressure monitoring diaphragms are typically fitted with a miniaturized Wheatstone bridge strain gauge comprising a series of resistors whose resistance is modified in proportion to the distance from the zero position the diaphragm of the pressure sensor is displaced by the applied pressure. Electrical pressure sensors are commonly employed in hospitals for continuous monitoring of blood pressure and the like. For this reason, hospitals employ monitors adapted to receiving an electrical output from the Wheatstone bridge pressure sensor and transforming it into a pressure reading using well known technology. Thus, an intracranial pressure monitoring catheter employing an electrical pressure sensor could be plugged directly into the pressure, monitor found in most hospital rooms without the need for an expensive intervening transducer to modify the signal into a format compatible with the monitor.
However, in designing a pressure monitoring assembly for monitoring intracranial pressure, special considerations are required. Inherent in all electrical pressure monitoring sensors is a risk of electrical shock that may render them unsuitable for insertion into the interior of the brain. Introducing electrical currents into the brain risks permanent damage.
Optical pressure monitoring transducers avoid this risk. Optical pressure sensors generally employ a light reflective diaphragm placed at the distal tip of an optical fiber. Displacement of the reflective diaphragm by applied pressure changes the intensity and/or other spectral characteristics of the reflected light signal, depending upon the type of reflective sensor used. For instance, U.S. Pat. No. 5,065,010 to Knute, issued Nov. 12, 1991, discloses an optical pressure catheter having a set of optical fibers for transmitting a light beam to and from a transducer which modulates the intensity of the reflected light in accordance with the sensed pressure. A photosensor comprising a bellows compressible by pressure is located at the distal end of the catheter and a photodetector located at the proximal end of the catheter measures the modulated intensity of the returned beam and produces a corresponding measurement signal. However, optical transducers operating upon the principles of intensity modulation suffer from the drawback that any curvature of the fiber optic extraneously reduces the intensity of the reflected light.
To overcome this source of error the Camino catheter preferably also contains a second set of optical fibers for transmitting a reference light beam to and from the location of the sensor. The reference light beam is sent to a second photosensor that measures the intensity of the returned reference light beam and produces a correction signal that compensates for variations in transmittance caused by bending of the catheter.
One of the disadvantages of the Camino system for monitoring intracranial pressure is that a dedicated stand alone interface module, such as that manufactured by Camino Laboratories, is required to display the pressure and communicate with various commercial patient monitors. Zeroing is also dependent upon the interface module, which “reads” the characteristics of the individual sensor and provides for zeroing by means of a screw type adjustment. Additionally, to reduce the error caused by bending the optical fibers, intracranial pressure catheters that rely upon modulated intensity of the reflected beam must be very rigid in construction and are therefore inserted into the skull via a bolt. The most reliable intensity modulation catheters, since they require four optical fibers, are larger, more invasive, and therefore inherently more dangerous, than is desirable.
Optical pressure transducers that modulate the wavelength of the reflected light in accordance with the variable to be measured are also known. For instance, U.S. Pat. Nos. 4,329,058 and 4,678,904, which are hereby incorporated by reference in their entirety, describe an optical transducer having an optically resonant sensor by which the wavelength of the reflected light is modified if the reflective diaphragm is deflected by applied pressure from its zero position. This kind of pressure transducer incorporates a Fabry-Perot interferometer in the reflective sensor.
The Fabry-Perot interferometer operates according to well-known principles whereby the gap between two reflective surfaces causes a plurality of reflections and splittings of a single beam of incident light, such that constructive and destructive interference of the components of the incident light beam may occur numerous times. Inasmuch as a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for inserting an intracranial catheter and for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for inserting an intracranial catheter and for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for inserting an intracranial catheter and for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2550760

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.