Method for injection molding a roller body from...

Plastic and nonmetallic article shaping or treating: processes – Mechanical shaping or molding to form or reform shaped article – To produce composite – plural part or multilayered article

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S251000, C264S254000, C264S255000

Reexamination Certificate

active

06426028

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an axis or a roller body on the basis of at least one first thermo-plastic material which is processable in an injection molding process.
This invention refers also to a method of producing this axis or this roller body, and the use of this axis or roller body, as well.
2. Description of the Related Art
Conventional rollers include an axis produced of metal or alloys.
This axis is bonded in a separate production step manually or mechanically to one or several rubber roller(s) or to one or several roller(s) of a thermoplastic material.
This bond may be an adhesive bonding, a pressing on, an engaging, etc.
These rubber rollers can, however, be directly vulcanised onto this axis.
Before such rollers can be used in modern electronic appliances such as printers, labelling machines, photo copy apparatuses, fax machines, etc., an extensive surface treatment such as grinding, roughening, etc. of the roller(s) is necessary.
Due to the various materials, the processing and post processing of such rollers is correspondingly expensive.
In order to achieve the desired geometry at the metal axis, such as for instance the diameter of the shaft, grooves, driving elements, etc., extensive post-treatments are necessary.
The natural large weight and also the possible electrostatic charging of the metal axis can have negative influences.
In order to minimize the drawbacks and the restrictions in selecting the geometry at the metal axis, axes have been developed on the basis of plastic materials.
Such conventional plastic material axes still incorporate, however, the drawback of the separate assembling of the roller of rubber or of a thermoplastic material, coupled with the above mentioned extensive surface treatment.
In the JP-A-03-24926 a method of producing guide rollers for the use in video cassette apparatuses (video tape recorder, VTR) and in cassette tapes for VTR is described.
Until the date of this Japanese invention such guide rollers were produced of only one single material.
This had the following drawbacks:
At the outer portions of such guide rollers recessed areas occur which necessitate a post-treatment by a machine.
Furthermore, when selecting materials a compromise between glideability and wear resistance always had to be reached.
According to JP-A-03-24926 these drawbacks are eliminated by the use of 2 different materials.
According to this method an inner part of such a guide roller is produced in a first station of a two colour injection molding machine.
The material for this inner part has self lubricating properties.
In the second station of the mentioned machine at least the entire outer cylinder shaped surface of the mentioned inner part is coated by such a second material which is wear resistant and makes up the outer surface of the guide roller.
This method is only suitable for the production of small (length between 0.5 mm to 3 mm) parts with a simple, cylinder shaped geometry.
At the area of contact between these two materials difficulties in respect of the bond between the materials can occur.
In the JP-A-60-199 622 a method of producing rollers on the basis of synthetic resins is described.
This method incorporates the following steps:
(a) a first crystalline resin is injection molded around an inlay part in the form of a metal axis;
(b) a second crystalline resin is injection molded around the inlay part obtained by the step (a).
The accordingly obtained product must be cut at its outermost surface and at its ends and must be polished.
This method has been developed in order to avoid enclosures of air and recessed areas at roller bodies with larger diameters (about 30 mm).
In the EP 0 492 477 A2 parts for an application in electrostatographic reproduction apparatuses are described.
The part described in the
FIGS. 6
to
8
has the following structure:
A hollow tube shaped part
30
of the materials aluminum, copper, stainless steel or other steel alloys is filled out and partly enclosed by a setting and flowable material.
The part
30
has slots
31
through which the settable and flowable material may exit.
By this exit the cavity in the corresponding injection molding tool is filled, resulting in the desired functional shape of the now filled roller
69
.
In a second shaping operation a coating
68
, such as for instance a formed elastomer, can be deposited onto this roller
69
.
According to GB 1 386 593 a polycarbonate for a rotating element, such as for instance a roller or a wheel, is produced in a first step in a first conventional injection molding tool.
The rotating element obtained in this manner is thereafter placed into a second injection molding tool and encased by a hoop of polyurethane.
According to GB 1 301 652 a base body having a specific shape is produced in a first step in a first conventional injection molding tool.
This base body may consist of a plastic material, such as for instance polypropylene.
This base body obtained in this manner, which also could be made of metal, is thereafter placed into a second injection molding tool and encased by a hoop of a plastic material, such as for instance a plastified polyvinylchloride.
Due to the specially shaped base body a good and safe positioning of the hoop is arrived at.
SUMMARY OF THE INVENTION
It is now an object of the present invention to overcome the above mentioned drawbacks.
It is a further object of the present invention to provide an axis or a roller body, which can be produced by a simple and economical method.
This axis or this roller body shall be made exclusively of thermoplastic materials processable in an injection molding process.
The bond between the respective used thermoplastic materials shall be durable.
This bond shall be arrived at without the aid of further additional materials such as adhesive agents, mounting elements, assembling aids, etc., and without outer influences such as pressure, ultra sonics, etc.
The respective used thermoplastic materials shall be able to be mutually harmonised with each other and be adaptable to the respective purpose of use.
The respective enlisted materials shall be made to specifically suit the respective required qualities of stability, dimension, wear, adhesiveness, hardness and friction in order to provide an optimal economical benefit.
The respective desired geometry of this axis or of this roller body shall be realisable and reproducible in an easy manner and in a series production.
The various elements of this axis or roller body, such as
the elements which have the function of a roller, and
the elements which have the function of the supporting, and also possibly
the driving elements,
the stabilizing elements,
the function- and/or constructional elements, and
the elements which contribute to the improvement and simplification of the squeezing off during the injection molding process,
shall be optimally harmoniseable and combinable with each other in order to allow for the respective requirements the best possible solutions.
This axis or this roller body shall meet the respective requirements regarding straightness, trueness, cylindericity, coaxiality and true running.
The above mentioned objects are met by the axis or by the roller body structured in accordance with the invention.
The inventive axis or roller body on the basis of at least one first thermoplastic material which is processable in an injection molding process, which incorporates the respective desired qualities, whereby this axis or this roller body
has at least one first element
1
which has the function of a roller, and
has at least one second element
2
which has the function of the support,.
and possibly includes
at least one driving element
3
,
at least one stabilizing element
4
,
at least one function and/or constructional element
5
, such as cams, keyways, grooves, levers, pins, bolts, bore holes, dogs, and
at least one third element
6
, which contributes to the improving and simplification of the squeezing off during the injection process,
is characterized in that the res

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for injection molding a roller body from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for injection molding a roller body from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for injection molding a roller body from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2899384

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.