Method for inhibiting bone resorption

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Phosphorus containing other than solely as part of an...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06465443

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to oral methods for inhibiting bone resorption in a mammal while minimizing the occurrence of or potential for adverse gastrointestinal effects. These methods comprise orally administering to a mammal in need thereof of a pharmaceutically effective amount of a bisphosphonate as a unit dosage according to a continuous schedule having a dosing interval selected from the group consisting of once-weekly dosing, twice-weekly dosing, biweekly dosing, and twice-monthly dosing. The present invention also relates to pharmaceutical compositions and kits useful for carrying out these methods.
BACKGROUND OF THE INVENTION
A variety of disorders in humans and other mammals involve or are associated with abnormal bone resorption. Such disorders include, but are not limited to, osteoporosis, Paget's disease, periprosthetic bone loss or osteolysis, and hypercalcemia of malignancy. The most common of these disorders is osteoporosis, which in its most frequent manifestation occurs in postmenopausal women. Osteoporosis is a systemic skeletal disease characterized by a low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Because osteoporosis, as well as other disorders associated with bone loss, are chronic conditions, it is believed that appropriate therapy will generally require chronic treatment.
Multinucleated cells called osteoclasts are responsible for causing bone loss through a process known as bone resorption. It is well known that bisphosphonates are selective inhibitors of osteoclastic bone resorption, making these compounds important therapeutic agents in the treatment or prevention of a variety of generalized or localized bone disorders caused by or associated with abnormal bone resorption. See H. Fleisch,
Bisphosphonates In Bone Disease, From The Laboratory To The Patient,
2nd Edition, Parthenon Publishing (1995), which is incorporated by reference herein in its entirety.
At present, a great amount of preclinical and clinical data exists for the potent bisphosphonate compound alendronate. Evidence suggests that other bisphosphonates such as risedronate, tiludronate, ibandronate and zolendronate, have many properties in common with alendronate, including high potency as inhibitors of osteoclastic bone resorption. An older bisphosphonate compound, etidronate, also inhibits bone resorption. However, unlike the more potent bisphosphonates, etidronate impairs mineralization at doses used clinically, and may give rise to osteomalacia, a condition resulting in an undesirable decrease in bone mineralization. See Boyce, B. F., Fogelman, I., Ralston, S. et al. (1984) Lancet 1(8381), pp. 821-824 (1984), and Gibbs, C. J., Aaron, J. E.; Peacock, M. (1986) Br. Med. J. 292, pp. 1227-1229 (1986), both of which are incorporated by reference herein in their entirety.
Despite their therapeutic benefits, bisphosphonates are poorly absorbed from the gastrointestinal tract. See B. J. Gertz et al.,
Clinical Pharmacology of Alendronate Sodium, Osteoporosis Int., Suppl.
3: S13-16 (1993) and B. J. Gertz et al.,
Studies of the oral bioavailability of alendronate, Clinical Pharmacology & Therapeutics
, vol. 58, number 3, pp. 288-298 (September 1995), which are incorporated by reference herein in their entirety. Intravenous administration has been used to overcome this bioavailability problem. However, intravenous administration is costly and inconvenient, especially when the patient must be given an intravenous infusion lasting several hours on repeated occasions.
If oral administration of the bisphosphonate is desired, relatively high doses must be administered to compensate for the low bioavailability from the gastrointestinal tract. To offset this low bioavailability, it is generally recommended that the patient take the bisphosphonate on an empty stomach and fast for at least 30 minutes afterwards. However, many patients find the need for such fasting on a daily basis to be inconvenient. Moreover, oral administration has been associated with adverse gastrointestinal effects, especially those relating to the esophagus. See Fleisch, Id. These effects appear to be related to the irritant potential of the bisphosphonate in the esophagus, a problem which is exacerbated by the presence of refluxed gastric acid. For example, the bisphosphonate, pamidronate has been associated with esophageal ulcers. See E.G. Lufkin et al.,
Pamidronate: An Unrecognized Problem in Gastrointestinal Tolerability, Osteoporosis International,
4: 320-322 (1994), which is incorporated by reference herein in its entirety. Although not as common, the use of alendronate has been associated with esophagitis and/or esophageal ulcers. See P. C. De Groen, et al.,
Esophagitis Associated With The Use Of Alendronate, New England Journal of Medicine
, vol. 335, no. 124, pp. 1016-1021 (1996), D. O. Castell,
Pill Esophagitis—The Case of Alendronate, New England Journal of Medicine
, vol. 335, no. 124, pp. 1058-1059 (1996), and U. A. Liberman et al.,
Esophagitis and Alendronate, New England Journal of Medicine
, vol. 335, no. 124, pp. 1069-1070 (1996), which are incorporated by reference herein in their entirety. The degree of adverse gastrointestinal effects of bisphosphonates has been shown to increase with increasing dose. See C. H. Chestnut et al.,
Alendronate Treatment of the Postmenopausal Osteoporotic Woman: Effect of Multiple Dosages on Bone Mass and Bone Remodeling, The American Journal of Medicine
, vol. 99, pp. 144-152, (August 1995), which is incorporated by reference herein in its entirety. Also, these adverse esophageal effects appear to be more prevalent in patients who do not take the bisphosphonate with an adequate amount of liquid or who lie down shortly after dosing, thereby increasing the chance for esophageal reflux.
Current oral bisphosphonate therapies generally fall into two categories: (1) those therapies utilizing continuous daily treatment, and (2) those therapies utilizing a cyclic regimen of treatment and rest periods.
The continuous daily treatment regimens normally involve the chronic administration of relatively low doses of the bisphosphonate compound, with the objective of delivering the desired cumulative therapeutic dose over the course of the treatment period. However, continuous daily dosing has the potential disadvantage of causing adverse gastrointestinal effects due to the repetitive, continuous, and additive irritation to the gastrointestinal tract. Also, because bisphosphonates should be taken on an empty stomach followed by fasting and maintenance of an upright posture for at least 30 minutes, many patients find daily dosing to be burdensome. These factors can therefore interfere with patient compliance, and in severe cases even require cessation of treatment.
Cyclic treatment regimens were developed because some bisphosphonates, such as etidronate, when given daily for more than several days, have the disadvantage of actually causing a decline in bone mineralization, i.e. osteomalacia. U.S. Pat. No. 4,761,406, to Flora et al, issued Aug. 2, 1988, which is incorporated by reference herein in its entirety, describes a cyclic regimen developed in an attempt to minimize the decline in bone mineralization while still providing a therapeutic anti-resorptive effect. Generally, cyclic regimens are characterized as being intermittent, as opposed to continuous treatment regimens, and have both treatment periods during which the bisphosphonate is administered and nontreatment periods to permit the systemic level of the bisphosphonate to return to baseline. However, the cyclic regimens, relative to continuous dosing, appear to result in a decreased therapeutic antiresorptive efficacy. Data on risedronate suggests that cyclic dosing is actually less effective than continuous daily dosing for maximizing antiresorptive bone effects. See L. Mortensen, et al.,
Prevention Of Early Postmenopausal Bone Loss By Risedronate, Journal of Bone and Mineral Research
, vol. 10

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for inhibiting bone resorption does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for inhibiting bone resorption, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for inhibiting bone resorption will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2974081

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.