Method for increasing wear resistance in an engine cylinder...

Internal-combustion engines – Combustion chamber – Having coating or liner

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06328026

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is directed to a method for enhancing the wear resistance of a cast iron engine cylinder bore comprising laser alloying of the cylinder bore with selected precursors and honing the cylinder bore to a preselected dimension. The present invention is particularly well suited for enhancing the resistance to wear caused by the corrosion caused by automotive ethanol fuel. The present invention is also directed toward an improved automotive engine comprising alloyed cylinder bores with enhanced corrosive wear resistance characteristics.
2. Description of the Prior Art
For many decades gasoline has been the primary fuel for internal combustion engines used in automobiles and related motor vehicles. Recent concerns about fuel economy and the adverse impact of automotive emissions on air quality have resulted in increased research and development activity in the use of alcohol blended fuels to power internal combustion engines. An example of such fuels is a blend of 85% ethanol and 15% gasoline, known as “E85” automotive fuel.
Automobile manufacturers have developed and tested E85 fueled engines. Engines which have cast iron cylinder bores, and which have been operated with E85 fuel may experience excessive bore wear resulting from the corrosive effects of E85 fuel. This wear problem is particularly acute in North American countries because of the advanced fuel injection technologies used in these countries.
SUMMARY OF THE INVENTION
The present invention is directed toward a method for enhancing the corrosive wear resistance of a cast iron engine cylinder bore used with ethanol-based fuels. The method of the present invention comprises coating the interior surface of the cylinder bore with a precursor comprising alloying elements that will result in enhanced wear characteristics when alloyed with the surface of the cylinder bore, and irradiating a portion of the interior surface of the cylinder bore with a laser at a sufficient energy level and for a sufficient time to melt the precursor and a portion of the cylinder bore substrate and to cause mixing of the melted materials so that the precursor comprising alloying elements is distributed into the interior surface of the bore and alloys with the iron thereat to form an alloyed iron surface layer. Preferred alloying elements which produce enhanced wear characteristics include Ti, Zr Ni—Ti composites and Ni—Zr composites. After irradiating, the present invention comprises honing the interior surface of the cylinder bore to a preselected dimension that leaves the alloyed iron exposed. This treatment not only reduces the wear rate, but results in more consistent and uniform wear.
The present invention is also directed toward an internal combustion engine comprising at least one cast iron cylinder bore, which has an interior surface comprising an alloyed layer integrally formed with the substrate of the bore. These alloyed layers comprise one or more alloying elements which enhance the corrosive wear resistance of said bore, and are preferably selected from the group consisting of titanium, zirconium, nickel-titanium composites, and nickel-zirconium composites.


REFERENCES:
patent: 3705758 (1972-12-01), Haskel
patent: 3848104 (1974-11-01), Locke
patent: 3855986 (1974-12-01), Wiss
patent: 3986767 (1976-10-01), Rexer et al.
patent: 4015100 (1977-03-01), Gnanamuthu et al.
patent: 4017708 (1977-04-01), Engel et al.
patent: 4157923 (1979-06-01), Yen et al.
patent: 4212900 (1980-07-01), Serlin
patent: 4322601 (1982-03-01), Serlin
patent: 4434189 (1984-02-01), Zeplatynsky
patent: 4475027 (1984-10-01), Pressley
patent: 4480169 (1984-10-01), Macken
patent: 4495255 (1985-01-01), Draper et al.
patent: 4535218 (1985-08-01), Krause et al.
patent: 4617070 (1986-10-01), Amende et al.
patent: 4638163 (1987-01-01), Braunlich et al.
patent: 4644127 (1987-02-01), La Rocca
patent: 4720312 (1988-01-01), Fukuizumi et al.
patent: 4724299 (1988-02-01), Hammeke
patent: 4746540 (1988-05-01), Kawasaki et al.
patent: 4750947 (1988-06-01), Yoshiwara et al.
patent: 4801352 (1989-01-01), Piwczyk
patent: 4839518 (1989-06-01), Braunlich et al.
patent: 4847112 (1989-07-01), Halleux
patent: 4898650 (1990-02-01), Wu et al.
patent: 4904498 (1990-02-01), Wu
patent: 4964967 (1990-10-01), Hashimoto et al.
patent: 4981716 (1991-01-01), Sundstrom
patent: 4998005 (1991-03-01), Rathi et al.
patent: 5032469 (1991-07-01), Merz et al.
patent: 5059013 (1991-10-01), Jain
patent: 5072092 (1991-12-01), Ritcher et al.
patent: 5095386 (1992-03-01), Scheibengraber
patent: 5124993 (1992-06-01), Braunlich et al.
patent: 5130172 (1992-07-01), Hicks et al.
patent: 5147999 (1992-09-01), Dekumbis et al.
patent: 5196672 (1993-03-01), Matsuyama et al.
patent: 5208431 (1993-05-01), Uchiyama et al.
patent: 5230755 (1993-07-01), Pierantoni et al.
patent: 5247155 (1993-09-01), Steen et al.
patent: 5257274 (1993-10-01), Barrett et al.
patent: 5265114 (1993-11-01), Sun et al.
patent: 5267013 (1993-11-01), Spence
patent: 5290368 (1994-03-01), Gavigan et al.
patent: 5308431 (1994-05-01), Maher et al.
patent: 5314003 (1994-05-01), Mackay
patent: 5319195 (1994-06-01), Jones et al.
patent: 5322436 (1994-06-01), Horng et al.
patent: 5331466 (1994-07-01), Van Saarloos
patent: 5334235 (1994-08-01), Dorfman et al.
patent: 5352538 (1994-10-01), Takeda et al.
patent: 5363821 (1994-11-01), Rao et al.
patent: 5387292 (1995-02-01), Morishige et al.
patent: 5406042 (1995-04-01), Engelfriet et al.
patent: 5409741 (1995-04-01), Laude
patent: 5411770 (1995-05-01), Tsai et al.
patent: 5430270 (1995-07-01), Findlan et al.
patent: 5446258 (1995-08-01), Mordike
patent: 5449536 (1995-09-01), Funkhouser et al.
patent: 5466906 (1995-11-01), McCune, Jr. et al.
patent: 5484980 (1996-01-01), Pratt et al.
patent: 5486677 (1996-01-01), Maischner et al.
patent: 5491317 (1996-02-01), Pirl
patent: 5514849 (1996-05-01), Findlan et al.
patent: 5530221 (1996-06-01), Benda et al.
patent: 5546214 (1996-08-01), Black et al.
patent: 5563095 (1996-10-01), Frey
patent: 5614114 (1997-03-01), Owen
patent: 5643641 (1997-07-01), Turchan et al.
patent: 5659479 (1997-08-01), Duley et al.
patent: 5671532 (1997-09-01), Rao et al.
patent: 5766693 (1998-06-01), Rao
patent: 5829405 (1998-11-01), Godel
patent: 5874011 (1999-02-01), Ehrlich
patent: 5958521 (1999-09-01), Zaluzec et al.
patent: 6095107 (2000-08-01), Kloft et al.
patent: 4126351 (1993-02-01), None
patent: 876870A1 (1998-04-01), None
patent: 279692 (1988-11-01), None
patent: 401083676A (1989-03-01), None
patent: 381082 (1991-04-01), None
patent: 3115587A (1991-05-01), None
patent: 403115531A (1991-05-01), None
patent: 5285686 (1993-11-01), None
patent: 1557193 (1990-04-01), None
patent: 1743770 (1992-06-01), None
patent: WO 95/21720 (1995-08-01), None
patent: WO 97/47397 (1997-12-01), None
Ayers, et al.; “A Laser Processing Technique for Improving the Wear Resistance of Metals,”Journal of Metals, Aug. 1981, 19-23.
Belvaux, et al.; “A method for Obtaining a Uniform Non-Gaussian Laser Illumination,”Optics Communications,vol. 15, No. 2, Oct. 1975, 193-195.
Bett, et al.; “Binary phase zone-plate arrays for laser-beam spatial-intensity distribution conversion,”Applied Optics, vol. 34, No. 20, Jul. 10, 1995, 4025-4036.
Bewsher, et al.; “Design of single-element laser-beam shape projectors,” AppliedOptics, vol. 35, No. 10, Apr. 1, 1996, 1654-1658.
Breinan et al.; “Processing material with lasers,”Physics Today, Nov. 1976, 44-50.
Bruno, et al.; “Laserbeam Shaping for Maximum Uniformity and Maximum Loss, A Novel Mirror Arrangement Folds the Lobes of a Multimode Laserbeam Back onto its Center,”Lasers & Applications,Apr. 1987, 91-94.
Chen, et al.; “The Use of a Kaleidoscope to Obtain Uniform Flux Over a Large Area in a Solar or Arc Imaging Furnace,”Applied Optics, vol. 2, No. 3, Mar. 1963, 265-571.
Christodoulou, et al.; “Laser surface melting of some alloy steels,”Metals Technology, Jun. 1983, vol. 10, 215-222.
Cullis, et al.; “A device for laser beam diffusion and homegenisation,” J. Phys. E:Sci. Instrum., vol. 12, 1979, 688-689.
Dahotre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for increasing wear resistance in an engine cylinder... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for increasing wear resistance in an engine cylinder..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for increasing wear resistance in an engine cylinder... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2576091

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.