Method for increasing the dynamic range of mass spectrometers

Radiant energy – Ionic separation or analysis – Methods

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S292000

Reexamination Certificate

active

06787760

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
Not Applicable
FIELD OF THE INVENTION
The present invention relates to methods for increasing the dynamic range of mass spectrometers. More specifically, the present invention is a method of improving the performance of mass spectrometers by first generating a mass spectrum, and then trapping and selectively ejecting ions using resonant rf excitation in a quadrupole ion filter based upon information from the prior spectrum.
BACKGROUND OF THE INVENTION
Progress in a wide range of scientific inquiry requires the qualitative and quantitative analysis of molecules, and important classes of problems involve the analysis of complex mixtures where the relative abundances of mixture components vary over many orders of magnitude. For example, a major goal of biological research in the field of proteomics is the understanding of protein functions in a cellular context. Unfortunately, many important protein classes necessary for this understanding are present only at low concentrations. As noted in Godovac-Zimmerman, J.; Brown, L.
Mass Spectrom. Rev.,
2000, 20, 1-57, the range of peptide (or protein) concentrations of interest in proteomic measurements can vary more than six orders of magnitude and can include >10
5
components. When analyzed in conjunction with capillary LC separations, both the total ion production rate from ESI and the complexity of the mixture at any point can vary by more than two orders of magnitude, and the relative abundances of specific components of interest can vary by >10
6
. This variation in ion production rate and spectral complexity constitutes a major challenge for proteome analyses. For example, the elution of highly abundant peptides can restrict the detection of lower-level co-eluting peptides since the dynamic range presently achieved in a single spectrum is ~10
3
for a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer and < or ~10
2
for an ion trap mass spectrometer. If the ion accumulation process (i.e., ion accumulation time) is optimized for the most abundant peaks, the accumulation trap will not be filled to capacity during the elution of lower abundance components from a chromatographic or electrophoretic separation, and the overall experimental dynamic range will be significantly constrained. If, however, longer accumulation times are used, the conditions conventionally used result in an “overfilling” of the analyzer trap in many cases, which will be manifested by biased accumulation, loss of measurement accuracy, or extensive activation and dissociation of the analytes. Thus, there is a need for methods aimed at avoiding the undesired artifacts associated with overfilling the mass analyzer trap. There is a further need for approaches which will also simultaneously expand the dynamic range of measurements.
Those having skill in the art have proposed a variety of methods and techniques to expand this dynamic range. In one such approach, a quadrupole ion filter is used as some combination of high and low bandpass filters, i.e. a mass filter to select a specific species or mass range for detailed analysis. However, this approach is targeted at a specific m/z peak or limited mass range and results in the loss of possible information on other low abundance species, and this is not generally useful in the characterization of complex mixtures. Therefore, there exists a need for methods for enhancing the dynamic range of mass spectrometers that can address complex mixtures with components having abundances spanning many orders of magnitude.
SUMMARY OF THE INVENTION
Accordingly, the present invention is a method for increasing the dynamic range of mass spectrometers. More particularly, the present invention finds particular utility in increasing the dynamic range of mass spectrometers which utilize ion trap type mass analyzers, such as quadrupole ion trap mass spectrometers (ITMS) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometers. By way of example, and not meant to be limiting, when analyzing complex protein digests, the present invention can increase the dynamic range of a mass spectrometer through the simultaneous and selective suppression of higher abundance peaks dispersed cross the mass spectrum. By eliminating these ions, lower abundant species can be analyzed since they can be accumulated to detectable levels, resulting in an increase in the dynamic range of the instrument.
As practiced by the present invention, selective ejection of the most abundant ion species from a quadrupole filter, is performed with rf excitation. Such excitation can be dipolar, quadrupolar, or parametric. If the frequency of the auxiliary rf-field is equal to the secular frequency (i.e., resonant excitation) or to the doubled secular frequency (i.e., parametric excitation) of a particular m/z ion species, the auxiliary rf-field causes these ions to oscillate with increased amplitudes. By introducing a supplemental rf-field, ions stored in a quadrupole ion filter can thus be efficiently ejected using either parametric excitation or resonant excitation.
The present invention thus increases the dynamic range of a mass spectrometer by utilizing a quadrupole ion filter as a device to selectively remove one or more undesired ions (peaks), thereby allowing the accumulation and subsequent detection of desired ions in a mass analyzer, such as an ion trap operated as a mass analyzer, adjunct to the ion filter. Typically, but not meant to be limiting, the desired ions are those that are present at relatively low concentrations, while the undesired ions are those that are present at relatively high concentrations. Accordingly, the present invention finds particular utility in instruments where ion capacity is constrained, such as mass spectrometers which utilize ion trapping in their analysis and detection schemes.
The method of the present invention first passes a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. Typically, the ions identified for subsequent ejection will be the most highly abundant species, as the ejection of these species produces the most additional “room” for further accumulation in the ion trap. However, it may not always be the case that ions are selected for ejection based purely on their abundance. In certain applications, ions are selected simply because they are not of interest to the desired analysis, even though they are not the most abundant. The present invention should thus be broadly construed to include any application where ions are selectively ejected using rf excitation to make room for further accumulation.
As further sampling introduces ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in the mass analyzer, thus allowing better collection and subsequent analysis of the desired ions.
The mass analyzer used for accumulation may be the same ion trap used for mass analysis in a FTICR or ITMS, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate ion trap in a FTICR or ITMS, where the mass analysis is performed.
The method of the present invention may be further enhanced as follows. Those skilled in the operation of ion trapping mass spectrometers generally have an understanding of the optimal level of charge, or ions, that can be introduced into a given trap, without causing undesirable effects on ion identification. Accordingly, when practicing the method of the present invention with a given sample of some unknown, a skilled artisan, utilizing a computer controlled series of steps, wo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for increasing the dynamic range of mass spectrometers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for increasing the dynamic range of mass spectrometers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for increasing the dynamic range of mass spectrometers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3237718

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.