Method for increasing the antigen presenting ability of...

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Animal cell – per se – expressing immunoglobulin – antibody – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007240, C435S372000, C435S383000

Reexamination Certificate

active

06358736

ABSTRACT:

BACKGROUND OF THE INVENTION
Antigen presenting cells (APCs) are naturally occurring cells whose function is to present both “self” and “foreign” proteins (antigens) to the immune system. When antigens are effectively presented by APCs, they can activate T lymphocytes to recognize and fight infections as well as some types of cancer (Shimizu, J. et al. 1991
J Immunol
. 146:1708-1714; Zou, J. et al. 1992
Cancer Immunol. Immunother
. 35:1-6; Takahashi, H. et al. 1993
International Immunology
5:849-857). Antigen-pulsed APCs have traditionally been prepared in one of two ways: (1) small peptide fragments, known as antigenic peptides, are “pulsed” directly onto the outside of the APCs (Mehta-Damani, A. et al. 1994
J. Immunol
. 153:996-1003); or (2) APCs are incubated with whole proteins or protein particles which are then ingested by the APCs. These proteins are digested into small peptide fragments by the APC and eventually carried to and presented on the APC surface (Cohen, P A et al. 1994
Cancer Res
. 54:1055-1058).
After APCs are prepared by one of the above methods, they can be injected back into a patient as a “vaccine,” eventually reaching locations such as lymph nodes where they present the desired antigen to T lymphocytes (Inaba, K. et al. 1990
J. Exp. Med
. 172:631-640 1990 [published erratum appears in
J. Exp. Med
. 1990 172(4):1275]). In another treatment, T lymphocytes are removed from a patient and stimulated to grow in culture by contact with the APCs (Cohen, P A et al. 1993
J. Immunother
. 14:242-252). This latter approach can be used to propagate large numbers of “antigen specific” T lymphocytes which can be given to the patient as “adoptive immunotherapy.”
An effective APC has several important properties: (1) it retains the peptide antigen on its cell surface long enough to present it to T lymphocytes; (2) it should process (ingest and digest) whole proteins or particles into peptide fragments as described above; (3) it can be activated to express additional “costimulatory” and adhesion molecules on its surface membrane which help T lymphocytes respond appropriately after encountering antigen on the APC surface. Because effective antigen presentation requires a complicated system of cellular signals, researchers have concentrated on collecting human cells whose primary natural function is antigen processing and presentation. While a wide variety of cell types such as monocytes, macrophages, B cells and dendritic cells have a demonstrated ability to present antigen, extensive evidence indicates that the dendritic cell (DC) is nature's most potent antigen-presenting cell. DCs can express all of the necessary costimulatory and presentation molecules with great flexibility. In addition, dendritic cells' only known function is antigen presentation. While other types of APCs are capable of resensitizing T lymphocytes to previously encountered antigens (so-called “recall” antigens), DCs are thought to be most responsible primary for sensitization of T lymphocytes (Croft, M. et al. 1994
J. Immunol
. 152:2675-2685).
DCs are derived from “myeloid precursor” cells in the bone marrow which also give rise to monocytes and macrophages (Thomas, R. et al. 1994
J. Immunol
. 153:4016-4028). It is also possible that monocytes themselves serve in vivo as immediate precursors to dendritic cells and macrophages. As support for this theory, researchers have found that monocytes are capable of developing into cells morphologically and immunophenotypically identical to either DCs or macrophages in culture. This finding indicates that lymphocytes which share the same bone marrow precursor are relatively uncommitted to a particular differentiation pathway for at least some portion of their development (Peters, J H et al. 1991
Pathobiology
59:122-126; Pickl et al,.
J. Immunol
. 157:3850, 1996; Zhou and Tedder,
Proc. Natl. Acad. Sci. U. S. A
. 93:2588, 1996).
Because DCs are derived from the bone marrow, they must travel through the blood until they reach their destination organs. These target organs include virtually every organ in the body. Due to this essential transit through the blood, the blood itself is the richest available source of DCs in the human body. It has been estimated that 1-3% of all mononuclear blood cells are precommitted DCs (Thomas, R. et al. 1993
J. Immunol
. 151:6840-6852). The 10-15% of peripheral blood mononuclear cells which are monocytes, and which are typically present in ten fold greater numbers than dendritic cells, may also, at least in part, have the potential to differentiate into DCs (Peters, J H et al. 1991
Pathobiology
59:122-126).
A number of strategies have been developed by others to isolate and purify human DCs from peripheral blood. The two fundamental approaches involve (1) isolating bone marrow precursor cells (CD34
+
) from blood and stimulating them to differentiate into DCs; or (2) collecting the precommitted DCs from peripheral blood. While the first approach is of great theoretic interest, the patient must unadvantageously be treated with cytokines such as GM-CSF to boost the number of circulating CD34
+
stem cells in the peripheral blood. Moreover, the procedures necessary to generate large numbers of DCs are costly and lengthy, and the function of DCs obtained in this fashion has not yet been proved adequate for many applications (Romani, N. et al. 1994
J. Exp. Med
. 180:83-93; Bernhard, H. et al. 1995
Cancer Res
. 55:1099-1104). In addition, exposing antigen presenting cells, such as dendritic cells, in culture to foreign proteins such as fetal calf serum can cause them to preferentially present these unwanted antigens.
The second approach for isolating DCs is to collect the relatively large numbers of precommitted DCs already circulating in the blood. Previous techniques for preparing mature DCs from human peripheral blood have involved combinations of physical procedures such as metrizamide gradients and adherence
onadherence steps (Freudenthal, P S et al. 1990
Proc. Natl. Acad. Sci
. 87:7698-7702); Percoll gradient separations (Mehta-Damani, et al. 1994
J. Immunol
. 153:996-1003); and fluorescence activated cell sorting techniques (Thomas, R. et al. 1993
J. Immunol
. 151:6840-6852). All of these methods are uniformly plagued by small final DC yields, quality control problems and/or probable functional alterations of the DCs due to physical trauma and the extended period of time required to complete these procedures.
One technique for separating large numbers of cells from one another is known as countercurrent centrifugal elutriation (CCE). In this technique, cells are subject to simultaneous centrifugation and a washout stream of buffer which is constantly increasing in flow rate. The constantly increasing countercurrent flow of buffer leads to fractional cell separations that are largely based on cell size.
It was demonstrated over ten years ago that when human blood mononuclear cells were separated by countercurrent centrifugal elutriation (CCE) into two basic fractions, then called “lymphocyte fraction” and “monocyte fraction,” that the “monocyte” fraction possessed the ability to present a recall antigen, tetanus toxoid, to the “lymphocyte” fraction (Esa, A H et al. 1986
Immunology
59:95-99). However, these investigators did not attempt to use elutriation to specifically isolate dendritic cells from the peripheral blood. Additionally, these investigators did not question whether the monocyte fraction could sensitize T lymphocytes to antigens never previously encountered (“primary in vitro sensitization”).
In experiments performed between 1992 and 1994, we performed CCE in the “traditional” manner. As was known, CCE separates cells by their size. Cell fractions were taken from the elutriation rotor at specific buffer flow rates, while the rotor spins at a constant rate. During the procedure, the buffer is constantly increasing in flow rate. In these previous experiments, we elutriated cell fractions from the rotor at a constant centrifugal speed of 3000 rpm. The following frac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for increasing the antigen presenting ability of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for increasing the antigen presenting ability of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for increasing the antigen presenting ability of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2869798

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.