Method for increasing fracture toughness in aluminum-based...

Metal treatment – Process of modifying or maintaining internal physical... – Producing or treating layered – bonded – welded – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S531000, C427S456000, C427S376800

Reexamination Certificate

active

06302975

ABSTRACT:

FIELD AND BACKGROUND OF INVENTION
The present invention relates generally to diffusion coating methods and specifically to a new and improved method for aluminizing steel components, and especially boiler components, to improve resistance to high-temperature corrosion.
Aluminum diffusion coating has been widely used for decades to protect various components from high-temperature corrosion attack. By way of example and not limitation, the aerospace industry has been applying aluminum diffusion coating on the surfaces of turbine blades to prolong the service lives of gas engines. Accordingly, several prior art aluminizing processes for the production of aluminum diffusion coating on steels have been developed and used on large components, such as furnace wall panels for boilers, in order to improve the quality of the component and/or to improve the process control involved in producing the component.
One aluminizing method is described in U.S. Pat. No. 5,135,777 to Davis, et al., which is hereby incorporated by reference. Essentially, this method involves placing a slurry-coated ceramic alumino-silicate fiber next to a workpiece and heating the combination until the slurry coating diffuses onto the workpiece. Significantly, a halide activator must be included in the slurry coating in order to effect the diffusion of the slurry material.
Another aluminizing process known to those skilled in the art involves applying a layer of commercial-grade aluminum onto the surfaces of a workpiece by means of thermal spray (e.g., plasma or arc spray). In aluminum thermal spray, feed material in the form of powder or wire is rapidly melted and injected to the substrate. The molten aluminum particles spread out and splatter as they strike the surfaces to be coated. These particles first bond to the substrate and then to each other, forming a surface layer. The aluminum sprayed parts are then heat treated at elevated temperatures in a furnace under an inert or reducing atmosphere. Such heating causes the aluminum to diffuse from the sprayed layer into the substrate surfaces of the workpiece. Once this diffusion occurs, the aluminum becomes an integral part of the workpiece and any remnant of the aluminum spray layer can be easily removed, leaving only an aluminizing diffusion coating on the workpiece. Although no halide activator is utilized in this process, this process has been limited solely to the use of a single element (i.e., commercial-grade aluminum), rather than a combination of elements. Further, as demonstrated by U.S. Pat. No. 5,873,951 to Wynns, et al. (which is hereby incorporated in its entirety), those skilled in the art had believed that introduction of chromium into an aluminizing process will produce instability in the alloy structures. Further, as discussed in Wynns, et al., many prior art methods (including Wynns, et al.) contemplated multi-step processes for diffusing aluminum and, in some cases, chromium or silicon.
Moreover, when the workpiece consists of steel, use of a thermal spray aluminizing process produces a multi-layered coating structure on the steel surface. The outer layers of this multi-layer coating structure consist of Fe—Al ordered phases, also known as intermetallic compounds, such as FeAl and Fe
3
Al. Although these aluminides are very corrosion resistant, they possess very low fracture toughness which makes them brittle and susceptible to mechanical damage. As a result, a workpiece aluminized by the thermal spray process must be handled with care to avoid accidental cracking and spallation of the coating.
In light of the foregoing, a diffusion coating material and method with improved fracture toughness is needed. Further, a thermal spray material for aluminizing which would allow multiple elements to be diffused simultaneously into steel surfaces would be welcome by the industry. Finally, a method for simultaneously introducing aluminum in conjunction with minor amounts boron and/or chromium into steel surfaces in order to increase fracture toughness without the use of a halide activator is desired.
SUMMARY OF THE INVENTION
Studies suggest that the main cause for low fracture toughness in polycrystalline FeAl and Fe
3
Al is moisture-induced hydrogen embrittlement resulting from atmospheric corrosion, which segregates hydrogen atoms to the crack tips and on the cleavage planes. In contrast, without this hydrogen embrittlement, tensile elongations greater than 17% have been observed for FeAl in dry air. Moreover, studies show that the addition of chromium up to 5 at. % (atomic percent, which is calculated the same way as a molar percentage) retards the penetration of hydrogen, thereby improving their fracture toughness. The ductility of iron aluminides can be further enhanced by introducing a trace amount of boron, such that the boron will segregate to grain boundaries and change the fracture mode of these materials from intergranular to transgranular. Despite the fact that the beneficial effects of chromium and boron used within bulk iron aluminides are known, those skilled in the art cannot and have not previously incorporated these elements into a diffusion coating system which incorporates a thermal spray.
The present invention comprises a method for improving the fracture toughness of aluminum-based diffusion coatings. This improved method involves preparing a feed material which is subsequently sprayed onto the workpiece. The feed material contains aluminum in conjunction with chromium and/or boron in a mixed or alloyed powder or another form of solid. If the feed material is another form of solid, it most advantageously has the form of a wire. The sprayed workpiece is then heat treated under an inert or reducing atmosphere for a sufficient amount of time to cause the feed material to diffuse into the workpiece surfaces. Finally, any excess feed material is removed from the workpiece.
A second embodiment of the invention comprises preparing a feed material containing aluminum in conjunction with chromium and/or boron in a mixed or alloyed powder or other solid form. Again, the other solid form of the feed material is most advantageously provided as a wire. The feed material is subsequently sprayed onto a ceramic media. Next, the media is placed in direct contact with the workpiece and the media and workpiece are heat treated for a sufficient amount of time to cause the metals on the ceramic media surface to diffuse into the workpiece. As above, the excess feed material, as well as the ceramic media, is then removed from the workpiece.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming part of this disclosure. For a better understanding of the present invention, and the operating advantages attained by its use, reference is made to the accompanying drawings and descriptive matter, forming a part of this disclosure, in which a preferred embodiment of the invention is illustrated.


REFERENCES:
patent: 4004047 (1977-01-01), Grisik
patent: 4500364 (1985-02-01), Krutenat
patent: 4655852 (1987-04-01), Rallis
patent: 4904501 (1990-02-01), Davis
patent: 5041309 (1991-08-01), Davis et al.
patent: 5135777 (1992-08-01), Davis et al.
patent: 5208071 (1993-05-01), Davis et al.
patent: 5364659 (1994-11-01), Rapp et al.
patent: 5492727 (1996-02-01), Rapp et al.
patent: 5589220 (1996-12-01), Rapp et al.
patent: 5873951 (1999-02-01), Wynns et al.
patent: 5972429 (1999-10-01), Bayer et al.
patent: 6165286 (2000-12-01), Bayer et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for increasing fracture toughness in aluminum-based... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for increasing fracture toughness in aluminum-based..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for increasing fracture toughness in aluminum-based... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2562222

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.