Method for improving wear resistance of abrasive tools

Stone working – Sawing – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S548000

Reexamination Certificate

active

06227188

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to cutting tools and more particularly to use of plastic materials for fabrication of cutting tools adapted to cut circular holes or bores.
2. Background Information
Metallic materials are commonly used to fabricate the main bodies of cutting tools. For example, steel is typically used to fabricate tubes and discs to serve as the main bodies of core bits and circular or disc-shaped saw blades, respectively. Cutting elements, such as abrasive elements or cutting teeth are brazed, laser welded, mechanically fastened to, or formed integrally with, the steel core. Such steel cores operate satisfactorily in a wide range of applications. However, they are not without drawbacks. In particular, metallic cores are relatively heavy, thus tending to make such cutting tools cumbersome and difficult to handle in certain applications. Metallic cores also disadvantageously tend to vibrate and generate noise during cutting operations. Moreover, metallic cores are relatively expensive and comprise a significant portion of the overall cost of the cutting tool.
Some of these problems have been recognized and attempts made to address them with respect to disc-shaped cutting tools. For example, U.S. Pat. Nos. 5,408,983 and 5,411,010 both disclose circular saw blades and/or cutting discs that utilize reinforced plastic composites in the disc-shaped main body portion thereof. These configurations may provide such advantages as reduced tool weight and noise reduction.
Use of similar materials, and the advantages associated therewith, have not, however, been carried over to cylindrical core bit type cutting tools. This is presumably due to the significant distinctions between core bit and circular disc cutting tools and the cutting applications for which they are used. Indeed, it is generally understood by those skilled in the art that these two types of elements operate in distinct cutting regimes, each with a unique set of parameters that are not transferable therebetween. In this regard, data and methodology such as techniques, guidelines and accepted practices in terms of cutting rates, materials and cutting speeds associated with conventional disc-shaped cutting tools are generally inapplicable to cylindrical core bit-type cutting tools.
As an example of these differences, peripheral speeds at which each individual cutting tip or tooth moves through the workpiece, are vastly different. For instance, conventional diamond tipped circular (disc) blades commonly used for cutting hard materials, such as, for example, concrete, typically range from approximately 4 inches (102 mm) to 48 inches (1219 mm) in diameter. Conventional recommended operational speeds in rotations per minute (rpm) for these blades yield a preferred peripheral speed of approximately 49 meters per second (m/s).
On the other hand, diamond segmented core bits commonly utilized for cutting similar material (concrete), range in diameter from approximately 0.4 inches to 10 inches (10 mm to 250 mm) and may be as large as 36 inches (900 mm) or more in some applications. Recommended operational speeds in rpm's yield a recommended peripheral speed of approximately 2.5 m/s. Such a wide discrepancy in peripheral speed, of more than an order of magnitude, is indicative of the non-analogous nature of these two distinct cutting tool types. Similar discrepancies in peripheral speed pertain to other cutting applications or workpiece materials, including, for example, asphalt, stone, reinforced concrete, limestone, silicon quartz, glass, etc.
Another factor that tends to militate against the use of plastic materials in core-bit applications is the relatively abrasive environment encountered by the body of the bit, relative to bodies of circular disc type blades, due to prolonged contact with grinding swarf. In this regard, during each revolution of a conventional disc type blade, an individual tooth or diamond enters the workpiece, removes some of the workpiece to thereby cut a kerf therein, then exits the workpiece. The removed material, along with any cutting lubricant or coolant, forms a relatively abrasive grinding swarf that is effectively carried through the kerf by the tooth and expelled therefrom as the tooth exits the kerf. In this manner, the swarf is effectively removed from the kerf (and from contact with the cutting tool) nominally as fast as the swarf is produced. The abrasive grinding swarf thus tends to contact only the teeth or cutting elements, rather than the relatively abrasion sensitive plastic composite body portion of the disc.
Contrariwise, the nature of core drilling applications requires the cutting teeth or diamonds to remain in the kerf until the cutting operation is complete. Accordingly, during most conventional cutting operations, the swarf, having no other space to occupy, tends to remain in the kerf where it climbs up the tube, carried by cutting liquid, as cutting progresses. Thus, in such cutting applications, the swarf remains in contact with the body of the core bit throughout the cutting operation. The deeper the cut or kerf, the greater the area of contact with the core body. This prolonged contact of the abrasive swarf with the cutting tool presents relatively aggressive working conditions to any components thereof fabricated from relatively soft and abrasion sensitive plastic materials.
Therefore, it is unexpected that a core drill bit made with a plastic core body can be used to cut concrete and other hard materials. It is even more unexpected that such a tool would have a. useful life at least as long as a comparable tool made with a steel core.
SUMMARY OF THE INVENTION
According to one aspect of the invention, a cutting tool adapted to cut a circular hole in a workpiece, includes:
a cutter of substantially cylindrical configuration including an array of cutting elements, the cutter having a cutting end and a coupling end;
a shaft of substantially cylindrical configuration fabricated from a non-metallic material, the shaft having a cutter engagement end and a drill engagement end;
the cutter and the shaft adapted for concentric, end to end engagement with one another wherein the coupling end is substantially rigidly engaged with the cutter engagement end;
the drill engagement end being adapted for operative engagement with a drill for rotation of the cutting tool about the concentric axis.
In a second aspect of the invention, a non-metallic body is provided for a cutting tool adapted to cut a circular hole in a workpiece. The cutting tool has a cutter of substantially cylindrical configuration, including an array of cutting elements, the cutter having a cutting end and an other end. The non-metallic body includes:
a shaft of substantially cylindrical configuration, the shaft having a cutter engagement end and a drill engagement end;
the shaft adapted for concentric, end to end engagement with the cutter wherein the cutter engagement end is substantially rigidly engaged with the coupling end;
the drill engagement end adapted for operative engagement with a drill for rotation of the cutting tool about the concentric axis.
In a third aspect of the invention, a method of drilling a hole in a workpiece includes the steps of:
(a) providing a cutting tool comprising:
i) a cutter of substantially cylindrical configuration, including an array of cutting elements, the cutter having a cutting end and a coupling end;
ii) a shaft of substantially cylindrical configuration fabricated from a non-metallic material, the shaft having a cutter engagement end and a drill engagement end; and
iii) the cutter and the shaft adapted for concentric, end to end engagement with one another wherein the coupling end is substantially rigidly engaged with the cutter engagement end;
(b) fastening the drill engagement end to a drill;
(c) operating the drill to rotate the cutting tool about the concentric axis; and
(d) engaging the cutting end with the workpiece.
In a further aspect of the present invention, a method for improving wear resistance of polymer-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for improving wear resistance of abrasive tools does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for improving wear resistance of abrasive tools, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improving wear resistance of abrasive tools will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2488479

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.