Data processing: financial – business practice – management – or co – Business processing using cryptography – Postage metering system
Reexamination Certificate
1997-10-21
2003-07-01
Cosimano, Edward R. (Department: 3629)
Data processing: financial, business practice, management, or co
Business processing using cryptography
Postage metering system
C705S403000
Reexamination Certificate
active
06587843
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention is directed to a method for improving the security of postage meter machines in the transfer of credit, specifically in the retransfer of funds to the data central.
DESCRIPTION OF THE PRIOR ART
A postage meter machine usually generates an imprint in a form agreed upon with the postal system: flush right, parallel to the upper edge of the postal matter beginning with the content of the postage in the postage stamp, date in the postmark and stamp imprints for advertising slogan and, possibly, type of mailing in the selective imprint. The postage value, the date and the type of mailing thereby form the variable information being input in conformity with the item to be mailed.
The postage value is usually the delivery fee (postage) prepaid by the sender that is subtracted from a refillable credit register and is employed for franking the postal mailing. In the current account method, by contrast, a register is merely incremented dependent on the frankings undertaken with the postage value and is read by a postal inspector at regular intervals.
In general, every franking that has been undertaken must be accounted for and every manipulation that leads to a non-debited franking must be prevented.
A known postage meter machine is equipped with at least one input unit, one output unit, an input/output control module, a memory containing the operating program, data and, in particular, the accounting registers, a control unit and a printer module. Given a printer module with print mechanism, measures must also be undertaken so that the print mechanism cannot be misused for undebited imprints in the deactivated condition.
In a postage meter machine disclosed in U.S. Pat. No. 4,746,234, fixed and variable data are stored in memories (ROM, RAM) in order to read out this data with a microprocessor when a letter on the conveying path actuates a micro-switch preceding the printing position in order to form a print control signal. The fixed and variable data are subsequently electronically combined to form a print format and can be printed on the envelope to be franked by thermo-transfer printing means.
A method for controlling the column-by-column printing of a postal value stamp in a postage meter machine is disclosed in European Application 578 042, wherein fixed and variable data are converted into graphic pixel image data separately from one another during the column-by-column printing. It therefore becomes difficult to undertake a manipulation at the print control signal without significant and expensive efforts when the printing ensues at high speed.
The memory arrangement in known postage meter machines also has at least one non-volatile memory module that contains the currently remaining credit, this resulting from the substraction of the postage value to be printed from a credit loaded into the postage meter machine earlier. The postage meter machine becomes inhibited when the remaining credit is zero.
Known postage meter machines contain three relevant postal registers in at least one memory for total used value (ascending register), residual credit still available (descending register) and a check sum register. The check sum is compared to the sum of total value used and available credit. This already makes a check for proper accounting possible.
It is also possible to transmit reloading information to the postage meter machine from a data central by means of a remote crediting procedure in order to reload a credit into the register for the remaining credit (residual value). Suitable security measures must be undertaken for this purpose so that the credit stored in the postage meter machine cannot be replenished in an unauthorized fashion. The aforementioned solutions to protect against misuse and counterfeiting attempts require additional outlay in terms of material and time.
U.S. Pat. No. 4,864,506 discloses entering into a communication to the remote data central, initiated by the postage meter machine, when the value of the credit in the descending register lies below a threshold for a predetermined length of time.
The aforementioned patent also discloses establishing communication with the postage meter machine, initiated by the data central, after a defined time span, and the postage meter machine only replies at predetermined times for receiving register data and for checking whether the postage meter machine is still connected to a specific telephone number.
The aforementioned patent also teaches interrogating the identification number of the postage meter machine and the values in the descending and ascending registers for authorization by the data central before a reloading of credit into the postage meter machine.
The aforementioned patent also discloses that the communication of the data central with the postage meter machine need not remain limited to merely a transfer of credit into the postage meter machine. In the case of a log-off of the postage meter machine, the communication of the data central with the postage meter machine is utilized in the data central for transferring the remaining credit of the postage meter machine. The value in the descending postal register of the postage meter machine is then zero, effectively deactivating the postage meter machine.
A security housing for postage meter machines that has internal sensors is disclosed by German OS 41 29 302. In particular, the sensors are equipped with switches connected to a battery, these switches being activated when the security housing is opened and automatically causing erasure of a memory (descending postal register) that stores the residual credit, by interrupting the energy supplied. As is known, however, it cannot be predicted what condition a voltage-high memory module will assume when the voltage is restored. Thus, an unpaid, higher residual credit could arise in the memory upon power restoration. Moreover, it cannot be precluded that the remaining value of the credit is at least partially discharged in the aforementioned way. This, however, would be disadvantageous in the case of an inspection since the remaining credit that has been paid by the postage meter machine user must be loaded again, but the amount of this remaining credit can be falsified by the aforementioned measures. This reference does not disclose how one can prevent a manipulator from restoring an unpaid residual credit.
Further security measures such as break-away screws and an encapsulated, shielded security housing are already used in known postage meter machines. Keys and a combination lock are also standard in order to make access to the postage meter machine more difficult.
U.S. Pat. No. 4,812,994 teaches prevention of an unauthorized access to a use of the postage meter machine by, in addition to standard measures, inhibiting the postage meter machine given the incorrect entry of a predetermined. password. Moreover, the postage meter machine can be set, by means of a password and an appropriate input via a keyboard, such that a franking is only possible during a predetermined time interval, or at predetermined times of day.
The password can be entered into the postage meter machine by a personal computer via modern, by a chip card or manually. The postage meter machine is enabled after a positive comparison to a password stored in the postage meter machine. A security module (EPROM) is integrated in the control module of the accounting unit or debiting unit. As a further security measure, an encryption module (separate microprocessor or program for the franking machine CPU based on DES or RSA code) is provided, which generates a recognition number in the franking stamp that includes the postage value, the user number, a transaction number and the like. It is still possible, however, that a password could be discovered and could be put into the possession of a manipulator together with the postage meter machine.
U.S. Pat. No. 4,812,965 discloses a remote inspection system for postage meter machines that is based on specific messages in the imprint of postal mailings that must b
Bischoff Enno
Gelfer George G.
Thiel Wolfgang
Wagner Andreas
Cosimano Edward R.
Francotyp-Postalia AG & Co.
Schiff & Hardin & Waite
LandOfFree
Method for improving the security of postage meter machines... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for improving the security of postage meter machines..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improving the security of postage meter machines... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3026351