Method for improving the mechanical properties of journal...

Electric heating – Inductive heating – Specific heating application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S639000, C219S640000, C219S676000, C148S573000, C266S129000

Reexamination Certificate

active

06734406

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a method for improving the mechanical properties, especially the hardness, of journal crosses for use in articulated shafts, specifically journal crosses having a plurality of journals in the peripheral direction and having journal roots with transition surfaces between the roots, and relates to a journal cross and also to a device for carrying out the method.
A journal cross comprises four journals which are arranged offset 90° from one another, as seen in the peripheral direction. They are connected to one another in the region of their journal roots. The journal crosses are used in articulated shafts for the purpose of torque transmission. The articulated shafts can be designed for a very wide range of applications. Particularly in heavy articulated shafts, the individual elements are under certain circumstances exposed to enormously high loads. This applies certain minimum demands on the condition of the component, in particular on its mechanical properties. The loads which act on the journal cross require a hard surface and, under certain circumstances, a low-wear surface. Because of the permanent dynamic loading in the form of peripheral bending stresses, a hard surface layer and a tough core are desired for the journal cross. Surfaces of the journals of a journal cross and also the transition surfaces provided between two journals, which are arranged offset through 90° with respect to one another, as seen in the peripheral direction, are to be hardened. These transition surfaces are also referred to as saddle surfaces. There are essentially three hardening methods known from the prior art.
In the first method, the entire journal cross is case hardened. The journal crosses, which are forged from a low-carbon steel, are carburized to a carbon content of approximately 0.8% down to the desired hardening depth in a carbon-donating furnace atmosphere. The crosses are then quenched, with only the carburized surface layers becoming hard, while the core remains ductile. However, this operation is very time-consuming, energy-intensive and therefore also very expensive, on account of the long annealing times. Further, this method of hardening journal crosses is generally unsuitable, since the surface-layer hardening depth which can be achieved with acceptable outlay using this method is limited in absolute terms. The relative depth of the hardened layer decreases with the component size. However, for a high component load-bearing capacity, it is necessary for the stresses in the component to lie below the strength limit at all points below the surface. Therefore, for hardening large components, there is a tendency to try to use induction hardening, since it is known that in this way it is possible to achieve greater hardened depths.
To avoid these drawbacks, the second known method, which is described in DE 43 39 204 C1, simultaneously and cohesively surface-hardens the journal cross completely by induction in the region of the journal surfaces and the saddle surfaces between the journals arranged in a cross shape. For induction heating the journal cross over the entire surface region to the transformation temperature, the journal cross is rotated in the center of a toroidal, medium frequency alternating magnetic field. The toroidal alternating magnetic field is generated by a ring inductor, which has its axis inclined by approximately 45° with respect to the axis of rotation of the journal cross and is arranged approximately concentrically with respect to the center point of the journal cross. Therefore, to achieve uniform hardening, accurate positioning of the journal required. Furthermore, the structural design of the device required to implement this method is very complex and expensive. The hardened depth which is to be achieved corresponds to the theoretically desired hardened depth in the most highly stressed region. The surface treatment entails the deployment of more resources than necessary.
A further, third solution consists in the use of shaped inductors. As a representative example in this context, refer to EP 0 785 615 A1 and to the publication “Wämebehandlung” by Dr. Dieter Liedtke, Dr. Rolf Jönsson, expert-Velag, third edition, p. 104. In this case, the inductor at least partially surrounds the workpiece which is to be hardened. The workpiece executes a uniform rolling movement. The internal contour of the inductor, when the coupling state remains the same, represents a parallel to the rolling contour of the workpiece. The drawback of this hardening method for hardening journal crosses is that the hardening run-out zone, in which the mechanical properties of the component are generally adversely affected, always lies at the highly stressed points, i.e. in the region of the journal root. A further significant drawback is that, on account of the sequential hardening of the journals using cylindrical inductors, the previously hardened journal-root region is always adversely affected by the subsequent hardening.
DE 1 955 010 discloses a method with a device for the nonuniform tempering of the journal cross by induction heating. The journal cross is overall surface-hardened. Then the journals are tempered for 6-12 seconds at a temperature of 100-200° C. and to a hardness of 60-67 HRC, at the points of contact with the needles of the bearing, and the points of the journal cross which lie in the vicinity of the journal base are tempered for 6-12 seconds at a temperature of 450-650° C. and to a hardness of 50-56 HRC. The nonuniform treatment of individual regions may lead to previously treated surface regions being superimposed and therefore to some extent influencing one another.
SUMMARY OF THE INVENTION
The invention is therefore based on the object of providing a method for improving the mechanical properties of journal crosses for use in articulated shafts which avoids the drawbacks of the prior art which have been described. In particular, in addition to allowing the mechanical properties to influence one another in a reliable way in the regions which are actually subject to high loads, it is desired for the operations to take less time and for a device for carrying out the method to be of structurally simple and inexpensive design.
According to the invention, at least the peripherally oriented surface regions of the journal roots of the individual journals of a journal cross and of the transition surfaces, which are also referred to as saddle surfaces and function as connecting surfaces between two journals arranged adjacent to one another in the peripheral direction, are induction-hardened in one method step. There is no continuous surface-layer hardening of the entire journal cross in one operation, which would have to be designed for the theoretical maximum required hardening depth. Instead, the mechanical properties, in particular the hardness, are improved in a targeted way only in the regions which are actually exposed to high loads, i.e. the transition regions between the journal roots of two journals arranged adjacent to one another in the peripheral direction, which are exposed to dynamic bending loads. This can be achieved inexpensively and in a simple way.
An important advantage of this method is that the regions which are actually highly stressed, namely the region of the journal root, do not lie in the hardening run-out zone, so that the mechanical properties of a journal cross in this region are not adversely affected by the hardening operation. Furthermore, with this solution, even in the event of sequential saddle-surface hardening, the risk of the journal root region which has previously been hardened being adversely affected during the subsequent hardening, as occurs with sequential journal hardening using cylindrical inductors, is avoided. Also, this method is not limited with regard to the depth of the hardened layer, so that even large components can be hardened in a corresponding way with satisfactory results.
On account of the only partial hardening of the peripheral surfaces of the journal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for improving the mechanical properties of journal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for improving the mechanical properties of journal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improving the mechanical properties of journal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3235441

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.