Method for improving the impact resistance and scratch...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S232000, C525S240000, C525S241000

Reexamination Certificate

active

06300417

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention relates generally to the field of polymeric systems and more specifically to a method for improving the impact resistance and scratch resistance of polymeric systems.
BACKGROUND OF THE INVENTION
The increasing market demand for structural applications of polymeric systems has dramatically heightened the importance of impact resistant and scratch resistant polymeric systems. For example, the automotive industry utilizes polymeric systems in the fabrication of automobile bumpers and fenders, which require both high impact resistance and high scratch resistance. Improving the impact resistance of a polymeric system, however, generally reduces the scratch resistance. Moreover, improving the scratch resistance generally reduces impact resistance. Known methods have been unsuccessful in improving both the impact and scratch resistance of polymeric systems.
Known methods of improving the impact resistance and scratch resistance of polymeric systems utilize additives and fillers to improve performance. In one type of method, rubber may be added as a toughener to improve the impact resistance of a polymeric system. The addition of rubber, however, typically reduces scratch resistance. Moreover, the addition of inorganic fillers has failed to increase the scratch resistance. In another type of method, rigid polymers are blended together to improve toughness. Blending randomly chosen rigid polymers, however, usually results in blends with unpredictable properties. Moreover, known rigid-rigid polymer blends do not exhibit satisfactory toughness.
While these approaches have provided improvements over prior approaches, the challenges in the field of polymeric systems have continued to increase with demands for more effective techniques. Therefore, a need has arisen for a new method for improving the impact resistance and scratch resistance of polymeric systems.
SUMMARY OF THE INVENTION
In accordance with the present invention, a method for improving the impact resistance and scratch resistance of polymeric systems is provided that substantially eliminates or reduces the disadvantages and problems associated with previously developed methods.
According to one embodiment of the invention, a method is disclosed. First, a starting material having a Young's modulus is provided. Second, from a plurality of possible modifiers, a modifier is identified and selected that has a Young's modulus comparable to or greater than that of the starting material and that, when blended with the starting material, creates a blend with a stable morphology. Third, the scratch resistance of the starting material is increased by blending the modifier with the starting material to form a blend.
According to another embodiment of the invention, a method for increasing the impact resistance and scratch resistance of a starting material is disclosed. First, a starting material having a Young's modulus is provided. Second, a modifier having a Young's modulus comparable to or greater than that of the starting material is provided. Third, the scratch resistance of the starting material is increased by blending the modifier with the starting material to form a blend, the modifier being operable to create a blend with a stable morphology, to remain in a dispersed phase of the blend, and to trigger crazing or shear banding in the blend. Fourth, a compatibilizer is added to the blend, wherein the compatibilizer is operable to increase the particle dispersion and interfacial adhesion of the blend.
According to yet another embodiment of the invention, a method for increasing the impact resistance and scratch resistance of a starting material is disclosed. First, a starting material comprising polypropylene is provided. Second, a modifier comprising NORYL-PX0844 is provided. Third, the scratch resistance of the starting material is increased by blending the modifier with the starting material to form a blend.
According to another embodiment of the invention, a method for maintaining the scratch resistance of a starting material while increasing the toughness of the starting material is disclosed. First, a starting material having a Young's modulus is provided. Second, a modifier having a Young's modulus comparable to or greater than that of the starting material is provided. Third, the scratch resistance of the starting material is maintained and the toughness of the starting material is increased by blending the modifier with the starting material to form a blend, the modifier being operable to create a blend with a stable morphology, to remain in a dispersed phase of the blend, and to trigger crazing or shear banding in the blend. Fourth, a compatibilizer is added to the blend, wherein the compatibilizer is operable to increase the particle dispersion and interfacial adhesion of the blend.
A technical advantage of the present invention is that the modifier improves both the impact and the scratch resistance of a polymeric system. Alternatively, the modifier maintains the scratch resistance of a polymeric system while increasing the toughness of the polymeric system. Another technical advantage of the present invention is that the compatibilizer improves the miscibility between the modifier and the polymeric system, enhancing the toughness of the system. These technical advantages dramatically increase the quality of polymeric systems as used in many structural applications, for example, the fabrication of automobile bumpers and interior instrument panels.
Other technical advantages are readily apparent to one skilled in the art from the following figures, descriptions, and claims.


REFERENCES:
patent: 4764559 (1988-08-01), Yamauchi et al.
patent: 4892904 (1990-01-01), Ting
patent: 0 115 712 (1984-08-01), None
patent: 0 326 895 (1989-01-01), None
patent: 7-165998 (1995-06-01), None
M.K. Akkapeddi and B. VanBuskirk, “Compatibilization and Toughening of PPE-PP Blends with Hydrogenated Styrene-Diene Block Copolymers”, Advances in Polymer Technology, vol. 11, No. 4, 263-275 (1992); 1992 by John Wiley & Sons, Inc.
H.J. Sue, A.F. Yee, “Failure Mechanisms in Alloy of Polyamide 6,6/Polyphenylene Oxide Under Severe Conditions”, Journal of Materials Science 26 (1991), 3449-3456.
Hung-Jue Sue, Albert F. Yee, “Toughening Mechanisms in a Multi-Phase Alloy of Nylon 6,6/Polyphenylene Oxide”, Journal of Materials Science 24 (1989), 1447-1457.
A.F. Yee, D.S. Parker, H.J. Sue and I-C. Huang, “Toughening Mechanisms in Some Rubber/Plastic and Plastic/Plastic Multi-Phase Blends”, Department of Materials Science and Engineering and Macromolecular Research Center, 417-421, Aug., 1987.
J. Chu, L. Rumao and B. Coleman, “Scratch and Mar Resistance of Filled Polypropylene Materials”, Polymer Engineering and Science, Nov. 1998, vol. 38, No. 11, 1906-1914, 1995.
J.L. Way, J.R. Atkinson, “Some Studies of Deformation Processes in Fully-Spherulitic Polypropyelene”, Journal of Materials Science 6 (1971), 102-109.
H.J. Sue, R.A. Pearson and A.F. Yee, “Mechanical Modeling of Initiation of Localized Yielding Under Plane Stress Conditions in Rigid-Rigid Polymer Alloys”, Polymer Engineering and Science, Mid-Jun. 1991, vol. 31, No. 11, 793-802.
R.J.M. Borggreve, R.J. Gaymans, J. Schuijer and J.F. Ingen Housz, “Brittle-Tough Transition in Nylon Rubber Blends: Effect of Rubber Concentration and Particle Size”, Polymer, 1987, vol. 28, 1489-1496.
A. Lustiger, C.N. Marzinsky and R.R. Mueller, “Spherulite Boundary Strenghtening Concept for Toughening Polypropylene”, Journal of Polymer Science, vol. 36, 2047-2056 (1998), 2047-2056.
H. Breuer, F. Haaf and J. Stabenow, “Stress Whitening and Yielding Mechanism of Rubber-Modified PVC”, J. Macromol. Sci-Phys., B14(3), (1977), 387-417.
A.S. Holik, R.P. Kambour, D.G. Fink and S.Y. Hobbs, “Grinding and Polishing Techniques for Thin Sectioning of Polymeric Materials for Transmission Light Microscopy”, Le May, Fallon, McCall, eds. Microstructural Science, vol. 7, (1979), 357-367.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for improving the impact resistance and scratch... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for improving the impact resistance and scratch..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improving the impact resistance and scratch... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2606544

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.