Powder metallurgy processes – Powder metallurgy processes with heating or sintering – Post sintering operation
Reexamination Certificate
2001-02-19
2003-05-13
Jenkins, Daniel J. (Department: 1742)
Powder metallurgy processes
Powder metallurgy processes with heating or sintering
Post sintering operation
C419S029000
Reexamination Certificate
active
06562289
ABSTRACT:
The invention relates to a method for producing a sintered material such as a magnetic body offering improved corrosion protection by coating the surface with a metal followed by a heat treatment. The invention also relates to a magnetic body containing rare earth metals with a corrosion-inhibiting coating consisting of a metal.
Magnets containing rare earth metals such as Nd—Fe—B magnets are coated with a metal in order to prevent or limit corrosion. Whereas in the past lacquers were applied to the metal to reduce corrosion, today the widely preferred method for limiting corrosion is the use of a metal coating based on nickel, tin, cadmium or aluminum.
It has been shown that in many applications adequate corrosion protection for Nd—Fe—B magnets in conditions of salt-laden air or high relative humidity can be provided by a metal coating based on aluminum.
For example a method for coating Nd—Fe—B magnets with aluminum utilizing the IVD (ion vapor deposition) process is known from the Proceedings of the Modern Magnetic Materials Conference, London, Jun. 20-21, 1989, pages 8.2 to 8.2.8. According to this publication the magnets are first cleaned by sand-blasting and then bombarded with argon ions in the vacuum chamber utilized in the IVD process. This procedure improves the adhesion of the IVD aluminum to the surface, thus enhancing the corrosion resistance of the magnet.
Another method for coating Nd—Fe—B magnets with aluminum is known from EP-A-O 794268. According to this document the corrosion resistance can be further improved by following the process described above with heat treatment at a temperature of at least 400° C. Magnets produced by this method exhibit 100 hours corrosion resistance according to HAST (highly accelerated steam test) conditions at 130° C. and a pressure of 2.7 bar.
Although the method described above does yield adequate corrosion resistance for permanent magnets for many applications, it still does not deliver sufficient corrosion resistance particularly for permanent magnets subject to high thermal or chemical stress or aggressive conditions. There remains a need, therefore, for further improvement of the corrosion resistance of permanent magnets containing rare earth metals.
Thus the goal of the present invention is to make a method available for producing coated magnetic bodies that display improved corrosion resistance in comparison to conventional magnetic bodies.
A further goal of the invention is to present a method for coating that dispenses with the need for treating the surface of the permanent magnet by means of mechanical abrasion, such as blasting with sand or corundum, prior to application of the metal coating.
These invention goals are achieved through a method for producing a sintered material with improved corrosion resistance by activating the surface and subsequently coating it with a metal followed by a heat treatment, specially characterized in that during activation prior to coating of the surface the following steps are performed:
removal of particles adhering to the surface of the sintered material by treating the surface with a stripper;
passivation of the surface by means of at least one step from the group
(a) treating the surface with hydrophilic solvent,
(b) treating the surface with phosphating solution,
(c) treating the surface with chromating solution,
(d) treating the surface with dewatering fluid or
(e) heat-treating the sintered material and
drying the sintered material.
According to the invention, a stripper is applied to the surface to remove undesired particles (such as oxides or magnetized dust) adhering to the surface of the sintered material, such particles having been shown drastically to reduce the adhesion of the anti-corrosion coating and its corrosion-protecting properties. This method of pre-treating the surface prior to coating yields improved corrosion resistance results. There is generally no need to carry out other, conventional methods of surface activation. Thus the use of a device for mechanical abrasion, such as blasting with sand or corundum, in order to activate the sintered material or to remove impurities prior to coating can preferably be avoided altogether.
The impurities mentioned above are understood to include particles of dirt, oxides or other material on the surface of the sintered body that can degrade the adhesion or corrosion resistance of the magnetic body.
According to the invention the surface is activated by stripping, passivation and drying. The stripper utilized for removing adhering particles preferably contains acid.
Should acid be used as the stripper, it should preferably be an acid that is available in aqueous solution. Suitable acids include for example nitric acid, nitrous acids, peroxide-sulfuric acid, or peroxide-nitric acid blends. Particularly preferred as stripper is a solution with acid content in a range from 0.2 to 25 weight percent, more particularly 1 to 15 weight percent. Most especially preferred as stripper is nitric acid in 8 to 15 percent aqueous solution.
Prior to stripping the sintered material can be cleaned in conventional fashion for example by pre-cleaning in an ultrasonic bath with an appropriate degreasing cleaning fluid. The pre-cleaning is usefully performed at elevated temperature, for example in a boiling degreasing fluid. After pre-cleaning and/or after stripping, an additional cleaning stage is preferred, for example by rinsing with water.
According to the invention passivation of the sintered material is carried out by means of at least one of the steps
(a) treating the surface with hydrophilic solvent,
(b) treating the surface with phosphating solution,
(c) treating the surface with chromating solution,
(d) treating the surface with dewatering fluid or
(e) heat-treating the sintered material.
Examples of hydrophilic or water-mixable solvents are alcohols, &ggr;-butyrolactone, acetone, glycol ether alcohols and n-methyl pyrolidone.
An example of a phosphating solution is Granodine® 20 from Henkel Corp.
An example of a chromating solution is Immunox® Zn Yellow from Blasberg Corp.
Dewatering fluids as such are known and function according to the principle of hydraulic displacement. An example of a dewatering fluid is a mineral oil or hydrocarbon mixture with water-displacing properties, such as Safecoat® from Castrol Corp.
If the surface is chemically passivated, for example by chromating or phosphating, passivation is preferably followed by a water rinse stage.
Subsequent to passivation the sintered material is dried. Drying follows preferably immediately after the passivation stage.
The sintered material can be dried in conventional fashion, for example by drying with hot air, under vacuum or in a centrifuge.
After the surface of the sintered material has been dried, a metal coating is applied to the surface in conventional fashion. In this context it is extremely surprising that a sintered body pre-treated prior to coating according to the invention can be stored for long periods, for example for several weeks, with no degradation of corrosion resistance.
The metal coating is applied preferably by means of a physical vapor deposition (PVD) method, in particular ion vapor deposition (IVD).
IVD coating methods are known for example from the Proceedings of the Modern Magnetic Materials Conference, London, Jun. 20-21, 1989, pages 8.2 to 8.2.8, and from EP-A-O 794268.
During the IVD process the sintered body is generally cleaned immediately prior to being coated by means of ionized argon in the vacuum chamber utilized for applying the coat. The metal to be deposited is then continuously vaporized inside the chamber.
Surprisingly it has been shown that cleaning the surface, carried out in conventional fashion with the help of ionized argon, can be still further improved by means of pre-treatment according to the invention.
The metal coating applied to the surface consists preferably of at least 75 weight percent of aluminum. Especially preferred is a metal coating that consists entirely of aluminum.
The thickness of the applied metal coating can
Staubach Harald
Zapf Lothar
Jenkins Daniel J.
Kilpatrick & Stockton LLP
Russell Dean W.
Vacuumschmelze GmbH
LandOfFree
Method for improving the corrosion protection of permanent... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for improving the corrosion protection of permanent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improving the corrosion protection of permanent... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3003288