Method for improving memory by identifying and using QEEG...

Surgery – Diagnostic testing – Detecting brain electric signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S545000

Reexamination Certificate

active

06309361

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a novel method for improving memory of objects, events, and the like and cognitive functioning related to the objects, events, and the like for the human brain by measuring, determining, recording, and correlating object-related, event-related, recall-related electrical brain potentials (“ERP”) with the use of whole skull electroencephalography, using a disposable electrode cap connected to a computer system arrangement and more particularly to a method of measuring and determining a large number of meaningful brain electrical potential changes in response to a continuously presented and varied specific verbal stimulus or verbal stimnuli interspersed with non-significant verbal stimuli concerning memory of objects, events, and the like and cognitive functioning related to the objects, events, and the like by a subject to establish an actuarial or historical base line for use within a predetermined time period and analyzing the measured ERP responses against the historical base line established from the related ERP data established from a group defined as a normal to coaching or feedback to the subject either as a non-verbal (e.g. manual) response or verbal response within the predetermined time period, using a computer.
2. Description of the Prior Art
The research in the area of cognitive functioning and brain physiology is of two general types, blood flow related and electrical activity. The blood flow type studies can employ different types of measures, including, oxygen, glucose or neurotransmitter use as well as other variations. Methodologies include the PET scan, SPECT scan, MRI, etc. Toga, A. W., & Mazziotta, J. C. (1996) have outlined the science and methodology of these and additional approaches of optical imaging, ERP's and transcranial stimulation. Studies of electrical activity will address event-related potentials (ERP) or quantitative EEG measures. ERP's study the activity of the brain within milliseconds following exposure to a stimulus. QEEG studies employ a longer period of time for analysis. The relationship between blood flow and electrical activity has been researched with varied findings. One study indicated that low blood flow is reflected in discordance in the theta (4-8 Hz) and beta (12-18 Hz) bands (Leuchter, A. F., Cook, I. A., Lufkin, T. B., Dunkin, J., Newton, T. F., Cummings, J. L., Mackey, J. K. & Walter, D. O. (1994)). Discordance was a measure developed which analyzes the relationship between relative and absolute power of a bandwidth. However, Leuchter et al. also noted that the associations between EEG power and perfusion or metabolism vary considerably across frequency bands and sites, with some studies showing little or no association.
Hemler, R. J. B., Hoogeveen, J. H., Kraaier, V., VanHuffelen, A. C., Wieneke, G. H., Hijman, R., & Glerum, J. H., (1990) were able to demonstrate that a 60% decrease in blood flow (induced by Indomethacin) resulted in a −0.3 Hz slowing of the alpha (8-13 Hz) peak frequency and a decrease in the relative power of the alpha band. There were no chances in the delta or theta band but there were decreases on memory performance tasks under the low blood flow condition. Jibiki, I., Kurokawa, K., Fukushima, T,. Kjido, H., Yamaguchi, NJ., Matsuda, H., & Hisada, K., (1994) were able to obtain significant negative correlations between blood flow (in group of patients with partial epilepsy) and the relative power of theta (4-7.8 Hz) and a positive correlation between blood flow and alpha (10-12.8 Hz) in the frontal, parietal and temporal regions. In the occipital regions there was a positive correlation between blood flow and relative power of beta1(13-25 Hz). The authors also noted that in previous research there was supporting evidence for the inverse relationship between delta and theta activity and blood flow (studies with cerebral infarction, Alzheimer's, and Pick's disease) as well as positive correlations between alpha power and blood flow.
For both types of methodologies the issue of location is paramount. Blood flow type studies generally employ a longer period of time for analysis, as the technology requires it, while RP studies focus in the millisecond range. QEEG studies will study seconds, not milliseconds. Blood flow studies focus on the difference between the activity under investigation and a control condition, which can be eyes closed or another relevant activation condition. ERP measures employ more of a level, location and time analysis. For example, a response to a stimulus is indicated by time since onset of stimulus, level of amplitude of response, and location of response. Electrophysiological studies enjoy the more precise measurement of the time variable and bypass the problem of the subtraction method. The subtraction method employs two conditions and subtracts the activation in one condition from the activation in another. The result is a degree of activation ditference measure (as indicated by t-tests). This methodology has received criticism due to the difficulty of assuming that its operational assumptions are valid. The discussions of these problems are evidenced in Price, C. J., Moore, C. J., & Friston, K. J. (1997)) and Friston, K. J., Price, C. J., Fletcher, P., Moore, C., Frackowiak, R. S. J., & Dolan, R. J. (1996).
Many studies in this area will focus on pathological states, i.e. Alzheimer's, and will look for differences with normals or activity of the pathological condition. Very few studies have looked at either the degree of activation from an appropriate condition or absolute level in terms of the effectiveness of cognitive functioning. The main emphasis has been on what happens where when we do this. The main cognitive correlates which have been studied include such activities as memory, reading, face recognition, etc.
Theoretical approaches to the understanding of brain dynamics and function have been of five general types. The first type as exemplified by Roland, P. E. (1993) can be described as a modular type, as it indicates what region is activated for a given task. Per Roland describes his approach as the cortical field activation hypothesis. “The cerebral cortex participates in brain work in awake human subjects by activating multiple cortical fields. Each activated field has an area of a few square centimeters. Activation means that the synapses and neurons in a field increase their biochemical activity. This leads to increases in transmembraneous ion transport and in increases in the rate of the regional cerebral metabolism (rCMR) or regional cerebral blood flow (rCBF) . . . The hypothesis states that the neurons in the cerebral cortex always chance their biochemical activity, not in a scattered and singular fashion, but in large distinct ensembles, each covering some 800 mm
3
to 3,000 mm
3
of the cortex.” (Roland, 1993, p. 105)
The second approach is an interactive-regional one, where different regions arc presumed functionally linked for a particular task. Gevins, A., Cutillo, B., DuRousseau, D., Le, J., Leong, H., Martin, N., Smith, M. E., Bressler, S., Brickett, P., McLaughlin, J., Barbero, N., & Lazer, K. (1994) employed a Evoked Potential Covariance measure and conclude that their results suggest the concept of functional networks in that each component cognitive process is associated with a sequence of spatiotemporal patterns of coordinated processing involving widely distributed areas of sensory, association and motor cortices. McIntosh, A. R., Nyberg, L., Bookstein, F. L., & Tulving, E. (1997), (p. 323) expand on this type of analysis in maintaining that “One way to examine whether the same region has a consistent pattern of interactions across retrieval tasks is to explore change in “functional connectivity”, loosely defined as the correlation of activity among brain regions . . . the neurobiological interpretation of functional connectivity is simply that two or more regions show correlated activity without reference to how the patterns may b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for improving memory by identifying and using QEEG... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for improving memory by identifying and using QEEG..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improving memory by identifying and using QEEG... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2595318

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.