Method for improving fiber dispersion and orientation in...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C523S348000

Reexamination Certificate

active

06756429

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to thermoplastic fiber reinforced composites utilized in molding and extrusion, and in particular, composites having as a matrix resin polyamide polymers.
BACKGROUND OF THE INVENTION
There has been growing interest in the use of long fiber reinforced thermoplastic composites as materials of construction because of the excellent physical properties inherent in a reinforcing network of fibrous materials such as glass, carbon, boron and alumina fibers embedded in a thermoplastic, as opposed to a thermosetting polymer matrix. Improvements in thermoplastic pultrusion techniques have occurred since the early 80's for directly impregnating thermoplastic high polymers with a high degree of wet-but of continuous fiber rovings so that chopped pellets of 10 mm and longer can be used in let downs with thermoplastic resin compounds. Chopped pellets of good quality now can readily incorporated in molding compounds which are fed directly into extruders feeding injection molds or extrusion dies.
Long fiber reinforced composites of high temperature engineering resins, e.g., polyarylethers, especially polyetherketones and polyethersulphones are also known. For example, carbon fiber reinforced polycarbonate, and polyetheretherketone composite materials have found increasing commercial application. Polypropylene and nylon have generated the highest commercial volumes to date among the thermoplastics, especially directed to automotive end-uses.
Resin structures reinforced with long (>5 mm) fibers have superior processing properties and often better physical properties at the same degree of fiber loading, as compared to those reinforced with short (2 mm) fibers. The long fiber compounds are generally manufactured by a so-called pultrusion method in which a continuous reinforcing fiber bundle is impregnated with a thermoplastic resin while pulling fiber roving bundles through a cross-head extruder and then through a die (U.S. Pat. No. 3,993,726), or a continuous reinforcing fiber bundle is immersed in a thermoplastic resin melt to wet it while it is drawn and then pulled through a die.
The following patents relate to the formation of long fiber reinforced pultrusion composites: U.S. Pat. Nos. 4,541,884, 4,549,920, 4,559,262, 4,892,600, 5,019,450, 5,213,889.
U.S. Pat. No. 3,993,726 describes a process for the continuous production of articles of thermoplastic resin reinforced with long fibers of glass. According to the method described, the roving is impregnated with a mixture of wetting thermoplastic resin and reinforcing thermoplastic resin in a crosshead die fed by an extruder. The fibers are impregnated by first expanding the fibers of the roving and coating the expanded fibers in a crosshead die and passing the fibers and the thermoplastic mixture through a bar zone so that the material thoroughly penetrates into each fiber. This system is not completely satisfactory, since the wetting polymer dilutes in the other polymer and physical properties are lost.
U.S. Pat. No. 4,937,208 discloses a process for producing thermoplastic resins reinforced with long fibers in which rovings are impregnated with a wetting thermoplastic polymer by means of a die and a baffle zone, then taking up the impregnated rovings in a second die where they are then covered with a thermoplastic polymer. As explained, the wetting thermoplastic polymer must be compatible with the coating thermoplastic polymer. Suggested combinations disclosed were grafted high-density polyethylene—low-density polyethylene, grafted high-density polyethylene—ethylene-vinyl acetate (EVA) copolymer, grafted EVA—polyvinyl chloride, grafted polypropylene—polypropylene, sequenced poly(ether-amide) copolymer—polyamide functonalized polyamide (for example &agr;,&OHgr;-diamines, &agr;,&OHgr;-diacids, &agr;-amine-&OHgr;-acid, monoamine)—polyamide, modified EVA—EVA or low-density polyethylene (PEbd).
U.S. Pat. No. 4,783,349 discloses a method of producing a fiber reinforced structure by melt impregnation of continuous fibers with a thermoformable polymer melt comprising pre-wetting the filaments of the fibers with a composition containing a melt plasticizer for the thermoformable polymer, prior to introducing the pre-wetted fibers into the melt, optionally removing the plasticizer when the composition contains a polymer miscible with plasticizer to leave polymer coated filaments and introducing the pre-wetted filaments into a polymer melt, optionally a polymer melt containing a metal plasticizer for the melt and preferably removing the plasticizer from the composition by volatilization. The pre-wetted polymer coated filaments can be let down into a compounding extruder running with the primary thermoplastic or processed directly in an injection molding apparatus being fed with a blend of fiber-reinforced, and non fiber-reinforced compound for use in processes other than direct melt impregnation. They can be used in the process known as film stacking impregnation or in processes involving initial impregnation using particulate polymers or alternatively in conventional extrusion compounding.
Nylon polymers have also been stabilized by incorporating stabilizing materials directly into the polymer chain. For example, epsilon-caprolactam may be polymerized in the presence of water, carboxylic acids and hindered piperidine derivatives (polyalkylpiperidines) to form a modified nylon 6 polymer that is stabilized against heat and light degradation. Such a stabilized polymer is described in PCT Application WO 95/28443 published Oct. 26, 1995.
Difficulties in the pultrusion of engineering resins, e.g. polyamide, result from the poor wet-out of the fibers. This problem is not so severe in the case of polypropylene. Some approaches to improving the pultrusion of polypropylene have been disclosed whereby the reinforcing fiber roving is treated in a separate step with a wetting thermoplastic polymer or solution thereof, such as a with a polyolefin modified by grafting with an ethylenically unsaturated polycarboxylic acid. However, this method requires a selection of specialized wetting polymers which must be substantially compatible with the matrix polymer, as well as a limit in the highest flexural or tensile modulus, generally, not to mention the cost and environmental impact of such a method. Recently, higher melt-flow polypropylene products have become the standard material for the one-pass pultrusion at high (30 vol. %) fiber loadings.
For a variety of reasons, such as the need to reduce costs and to fabricate lighter structures, improved flexural and tensile modulus are desired from less costly polymer composites. The limitations of flowability for fiber-reinforced composites present problems particularly in the injection molding of large surface area articles using a composite wherein the fiber content exceeds 15, 20 and even greater than 30 volume percent. Desirable thermoplastic materials, such as polyamides, in particular the phthalamide-types which otherwise provide inherently high modulus, and physical properties at high in-service temperatures have limits on moldability, especially in light of the molding tonnage available to molders. The high volume content of fibers results in relatively little polymer being available at the surfaces of the work pieces to be joined. Differences in the dispersion patterns of the long fibers results in variations in resulting physical properties of the molded composite.
In the manufacture of long fiber reinforced pellets of conventional engineering resins having acceptable end-use physical properties have melt viscosities in excess of 100 Ns/m
2
. Adequate wetting of the fibers in a pultrusion process with a melt of such high viscosity is not easily achieved. Problems of fiber roving breakage, lowering of line speeds to promote wet-out, and polymer degradation are possible. Any attempts to improve production by reducing the pultrusion matrix polymer melt viscosity, such as by increasing the melt temperature runs a greater risk of operating in an unstable thermal window

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for improving fiber dispersion and orientation in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for improving fiber dispersion and orientation in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improving fiber dispersion and orientation in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3363873

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.