Method for improved selectivity in photo-activation of molecular

Surgery – Miscellaneous – Methods

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

604 20, A61B 0019

Patent

active

058294481

ABSTRACT:
A method for the treatment of a particular volume of plant or animal tissue comprising the steps of treating the plant or animal tissue with at least one photo-active molecular agent, wherein the particular volume of the plant or animal tissue retains at least a portion of the at least one photo-active molecular agent, and then treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of at least one of the at least one photo-active molecular agent retained in the particular volume of the plant or animal tissue, wherein the at least one photo-active molecular agent becomes active in the particular volume of the plant or animal tissue. There is also disclosed a method for the treatment of cancer in plant or animal tissue and a method for producing at least one photo-activated molecular agent in a particular volume of a material.

REFERENCES:
patent: 4822335 (1989-04-01), Kawai et al.
patent: 4973848 (1990-11-01), Kolobanov et al.
patent: 5034613 (1991-07-01), Denk et al.
patent: 5231984 (1993-08-01), Santana-Blank
patent: 5558666 (1996-09-01), Dewey et al.
patent: 5586981 (1996-12-01), Hu
J.W. Tessman, et al., "Photochemistry of Fura-Side 8-Methoxypsoralen-Tymidine Monoadduct Inside the DNA Helix. Conversion to Diadduct and to Pyrone-Side Monoadduct," Biochemistry, 24 (1985) 1669-1676.
J.C. Kennedy, et al., "Photodynamic Therapy with Endogenous Protoporphyrin IX: Basic Principles and Present Clinical Experience," J. of Photochemistry and Photobiology,B: Biology, 6 (1990) 143-148.
K. Teuchner, et al., "Spectroscopic Properties of Potential Sensitizers for New Photodynamic Therapy Start Mechanisms via Two-Step Excited Eletronic States," Photochemistry and Photobiology,57 (1993) 465-471.
A.R. Young, "Photocarcinogenicity of Psoralens Used in PUVA Treatment: Present Status in Mouse and Man," J. of Photochemistry and Photobiology, B: Biology, 6 (1990) 237-247.
M.J. Wirth, et al., "Two-Photon Excited Molecular Fluorescence in Optically Dense Media," Analytical Chemistry, 49 (1977) 2054-2057.
M.J. Sepaniak, et al., "Laser Two-Photon Excited Molecular Fluorescence Detection for High Pressure Liquid Chromatography," Analytical Chemistry, 49 (1977) 1554-1556.
M.J. Sepaniak, et al., "High-Performance Liquid Chromatographic Studies of Coal Liquids by Laser-Based Detectors," J. Of Chromatography, 211 (1981) 95-102.
W.D. Pfeffer, et al., "Laser Two-Photon Excited Fluorescence Detector for Microbore Liquid Chromatography," Analytical Chemistry, 58 (1986) 2103-2105.
M.J. Wirth, et al., "Very High Detectability in Two-Photon Spectroscopy," Analytical Chemistry, 62 (1990) 2103-2105.
J.E. Hearst, et al., "The Reaction of the Psoralens with Deoxyribonucleic Acid," Quarterly Review of Biophysics, 17 (1984) 1-44.
Pierce, Jr. et al "Conspectus" Comprehensive Therapy 16(4):3-8, 1990.
Amato "Hope for a magic bullet that moves at the speed of light." Science 262:32-33, Oct. 1993.
Schmidt-Erfurth et al. "Photodynamic therapy of experimental choroidal melanoma using lipoprotein-delivered benzoporphyrin" Opthalmology 101:89-99, 1994.
Rosenthal et al. "Clinical applications of photodynamic therapy" Ann Med 26:405-9, 1994.
Marcus et al. "Photodynamic therapy for the treament of squamous call carcinoma using benzoporphyrin derivative" J Dermatol Surg Oncol 20:375-382, 1994.
Kung-tung et al. "Therapeutic effects of photosensitizers in combination with laser and ACNU on an in vivo or in vitro model of cerebral glioma" Chinese Medical Journal 108(2):98-104, 1995.
Castro et al. "The concept of laser phototherapy" Laser Applications in otolaryngology 29(6):1011-29, Dec. 1996.
Kennedy, J.C., et al., (1990) Photodynamic therapy with endogenous protoporphytin IX: basic principles and present clinical experience. J. Photochem. Photobiol. B: Biology. 6, 143-148.
Fisher, A.M.R., et al., (1995) Clinical and preclinical photodynamic therapy. Lasers Surg. Med.. 1 7, 2-31.
Tessman, J.W., et al., (1995) Photochemistry of the furan-side-8-methoxypsoralen-thymidine monoadduct inside the DNA helix. Conversion to diadduct and to pyrone-side monoadduct. Biochem. 2 4, 1669-1676.
Teuchner, K.A., et al., (1993) Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via two-step excited electronic states. Photochem. Photobiol. 5 7, 463-471.
Young, A.R. (1990) Photocarcinogenicigy of psoralens used in PUVA treatment: present status in mouse and man. J. Photochem. Photobiol., B: Biology 6, 237-247.
Cheong, W-F., et al., (1990) A review of the optical properties of biological tissues. IEEE J. Quant. Electron. 2 6, 2166-2185.
Dougherty, T.J., et al., (1975) Photoradiation therapy II. Cure of animal tumors with hematoporphyrin and light. J. Natl. Cnacer Inst. 5 5, 115-120.
Gomer, C.J., et al., (1989) Properties and applications of photodynamic therapy. Rad. Res. 1 20, 1-18.
Kessel, D., et al., (1991) Photophysical and photobiological properties of diporphyrin ethers. Photochem. Photobiol. 5 3,469-474.
Dolphin, D., (1994) 1993 Syntex award lecture, photomedicine and photodynamic therapy. Can. J. Chem. 7 2, 1005-1013.
Katsumi, T.A., et al., (1996) Photodynamic therapy with a diode laser for implanted fibrosarcoma in mice Employing mono-L-aspartyl chlorin E6. Photochem. Photobiol. 6 4, 671-675.
Gopert-Mayer, M., (1931) Elementary process with two quantum jumps. Ann. Physik 9, 273-294.
Kaiser, W. and C.G.B. Garrett, (1961) Two photon excitation in CaF.sub.2 :Eu.sup.2+. Phys. Rev. Lett. 7, 229-231.
Monson, P.R. and W.M. McClain, (1970) Polarization dependence of the two-photo absorption of tumbling molecules with application of liquid 1-chloronaphthalene and benzene. J. Chem. Phys. 5 3, 29-37.
Wilson, B.C. And M.S. Patterson, (1986) The physics of photodynamic therapy. Phys. Med. Biol. 3 1, 327-360.
Draumer, N.H., et al., (1997) Femtosecond dynamics of excited-state
Swofford, R.L. And W.M. McClain, (1975) The effect of spatial and temporal laser beam characteristics on two-photon absorption. Chem Phys. Lett. 3 4, 455-459.
Hammer, D.X., et al., (1996) Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media. Ieee J. Quant. Electron. 3 2, 670-678.
Andreoni, A., et al., (1982) Two-step laser activation of hematoporphyrin derivative. Chem. Phys. Lett. 8 8 37-39.
Shea, C.R., et al., (1990) Mechanistic investigation of doxycyckine photosensitization by picosecond-pulsed and continous wave laser irradiation of cells in cultrue. J. Biol. Chem. 2 6 5, 5977-5982.
Inaba, H., et al., (1985) Nd:YAG laser-induced hematoporphyrin visible flourescence and two-photon-excited photochemical effect on malignant tumor cells. J. Opt. Soc. Am. A: Opt. Inage Science 2, P72 (mtg abstr.).
Mashiko, S., et al., (1986) Two-photon excited visible fluorescence of hematoporphyrin and phiophorbide a and in vitro experiments of the photodynamic . . . J. Opt. Soc. Am. B: Opt. Phys. 3, P72-P73 (mtg abstr.).
Yamashita, Y, et al., (1991) Photodynamic therapy using pheophorbide-a and Q-switched Nd:YAG laser on implanted human hepatocellular carcinoma, Gast. Jap. 2 6, 623-627.
Fugishima. I., et al., (1991) Photodynamic therapy using phophorbide a and Nd:YAG laser. Neurol. Med. Chir. (Tokyo) 3 1, 257-263.
Mashiko, S., et al., (1985) Basic study of photochemical effect of pheophorbide-a irradiated by Nd:YAG laser light. Nippon Laser Igakukaishi 6,113-116.
Steil, H., et al., (1993) Photophysical properties of the photosensitizer phophorbide a studied at high photon flux densities. J. Photochem. Photobiol. B: Biology 1 7, 181-186.
Bodaness, R.S. And D.S. King (1985) The two-photon induced fluorescence of the tumor localizing photo-sensitizer hematoporphyrin derivative via 1064nm . . . Biochem. Biophys. Res. Comm. 1 2 6, 346-351.
Bodaness, R.S., et al., (1986) The two-photon laser-induced fluorescence of the tumor-localizing photosensitive hematoporphyrin derivative. J. Biol. Chem. 2 6 1, 12098-12101.
Lenz, P., (1995) In vivo excitation of photosensitizers by infrared light. Photochem. Photobiol. 6 2, 333-338.
Patrice, T., et al., (19

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for improved selectivity in photo-activation of molecular does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for improved selectivity in photo-activation of molecular, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improved selectivity in photo-activation of molecular will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-680313

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.