Method for improved safety in externally focused microwave...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Thermal applicators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S102000

Reexamination Certificate

active

06768925

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to a minimally invasive method for administering focused energy such as adaptive microwave phased array hyperthermia for treating ductal and glandular carcinomas and intraductal hyperplasia as well as benign lesions such as fibroadenomas and cysts in compressed breast tissue. In addition, the method according to the invention may be used to treat healthy tissue containing undetected microscopic pathologically altered cells of high-water content to prevent the occurrence of or the recurrence of cancerous, pre-cancerous or benign breast lesions.
In order to treat primary breast cancer with hyperthermia, it is necessary to heat large volumes of tissue such as a quadrant or more of the breast. It is well known that approximately 90% of all breast cancers originate within the lactiferous ductal tissues (milk ducts) with much of the remaining cancers originating in the glandular tissue lobules (milk sacks) (Harris et al., The New England Journal of Medicine, Vol. 327, pp. 390-398, 1992). Breast carcinomas often involve large regions of the breast for which current conservative treatments have a significant risk of local failure. Schnitt et al., Cancer, Vol. 74 (6) pp. 1746-1751, 1994. With early-stage breast cancer, known as T1 (0-2 cm) or T2 (2-5 cm) cancers, the entire breast is at risk and often is treated with breast-conserving surgery combined with full-breast irradiation to destroy any possible microscopic (not visible to the human eye without the aid of a microscope or mammography) cancer cells in the breast tissue (Winchester et al., CA-A Cancer Journal for Clinicians, Vol. 42, No. 3, pp. 134-162, 1992). The successful treatment of invasive ductal carcinomas with an extensive intraductal component (EIC) where the carcinomas have spread throughout the ducts is particularly difficult, since large portions of the breast must be treated. Over 800,000 breast needle biopsies of suspicious lesions are performed annually in the United States with approximately 180,000 cases of cancer detected, the rest being nonmalignant such as fibroadenomas and cysts.
The use of heat to treat breast carcinomas can be effective in a number of ways, and in most cases the heat treatment must be capable of reaching, simultaneously, widely separated areas within the breast. Heating large volumes of the breast can destroy many or all of the microscopic carcinoma cells in the breast, and reduce or prevent the recurrence of cancer—the same approach is used in radiation therapy where the entire breast is irradiated with x-rays to kill all the microscopic cancer cells. Heating the tumor and killing a large percentage or all of the tumor cells prior to lumpectomy may reduce the possibility of inadvertently seeding viable cancer cells during the lumpectomy procedure, thus reducing local recurrences of the breast. Sometimes, the affected breast contains two or more tumor masses distributed within the breast, known as multi-focal cancer, and again the heating field must reach widely separated regions of the breast. Locally advanced breast carcinomas (known as T3) (Smart et al., A Cancer Journal for Clinicians, Vol. 47, pp. 134-139, 1997) can be 5 cm or more in size and are often treated with mastectomy. Pre-operative hyperthermia treatment of locally advanced breast cancer may shrink the tumor sufficiently to allow a surgical lumpectomy procedure to be performed—similar to the way pre-operative chemotherapy is currently used. Pre-operative hyperthermia treatment of locally advanced breast cancer may destroy the tumor completely, eliminating the need of any surgery.
It is well known that microwave energy can preferentially heat high-water content tissues such as breast tumors and cysts, compared to the heating that occurs in low-water content tissue such as fatty breast tissue. Many clinical studies have established that hyperthermia (elevated temperature) induced by electromagnetic energy absorption in the microwave band, significantly enhances the effect of radiation therapy in the treatment of malignant tumors in the human body (Valdagni, et al., International Journal of Radiation Oncology Biology Physics, Vol. 28, pp. 163-169, 1993; Overgaard et al., International Journal of Hyperthermia, Vol. 12, No. 1, pp. 3-20, 1996; Vernon et al., International Journal of Radiation Oncology Biology Physics, Vol. 35, pp. 731-744, 1996; van der Zee et al, Proceedings of the 7
th
International Congress on Hyperthermic Oncology, Rome, Italy, April 9-13, Vol. II, pp. 215-217, 1996; Falk and Issels, Hyperthermia in Oncology, International Journal of Hyperthermia, Vol. 17, No. 1, 2001, pp. 1-18.). Radio-resistant cells such as S-phase cells can be killed directly by elevated temperature (Hall, Radiobiology for the Radiologist, 4
th
Edition, J B Lippincott Company, Philadelphia, pp. 262-263, 1994; Perez and Brady, Principles and Practice of Radiation Oncology, Second Edition, J B Lippincott Company, Philadelphia, pp. 396-397, 1994). Hyperthermia treatments with microwave radiating devices are usually administered in several treatment sessions, in which the malignant tumor is heated to about 43° C. for about 60 minutes. It is known that the amount of time to kill tumor cells decreases by a factor of two for each degree increase in temperature above about 43° C. (Sapareto, et al., International Journal of Radiation Oncology Biology Physics, Vol. 10, pp. 787-800, 1984). Thus, a 60-minute treatment at 43° C. can be reduced to only about 15 minutes at 45° C., which is often referred to as an equivalent dose (t
43° C.
equivalent minutes). It has also been clinically established that thermotherapy enhances the effect of chemotherapy (Falk and Issels, 2001). During treatments with noninvasive microwave applicators, it has proven difficult to heat semi-deep tumors adequately while preventing surrounding superficial healthy tissues from incurring pain or damage due to undesired hot spots. The specific absorption rate (SAR) in tissue is a common parameter used to characterize the heating of tissue. The SAR is proportional to the rise in temperature over a given time interval, and for microwave energy the SAR is also proportional to the electric field squared times the tissue electrical conductivity. The units of absolute SAR are watts per kilogram.
Non-coherent-array or non-adaptive phased array hyperthermia treatment systems typically can heat superficial tumors, but are restricted in their use for heating deep tumors or deep tissue, because they tend to overheat intervening superficial tissues, which can cause pain and/or burning. The first published report describing a non-adaptive phased array for deep tissue hyperthermia was a theoretical study (von Hippel, et al., Massachusetts Institute of Technology, Laboratory for Insulation Research, Technical Report 13, AD-769 843, pp.16-19, 1973). U.S. Pat. No. 3,895,639 to Rodler describes two-channel and four-channel non-adaptive phased array hyperthermia circuits. Recent developments in hyperthermia systems effectively targets the delivery of heat to deep tissue using adaptive phased array technology originally developed for microwave radar systems (Skolnik, Introduction to Radar Systems, Second Edition, McGraw-Hill Book Company, 1980 pp. 332-333; Compton, Adaptive Antennas, Concepts and Performance, Prentice Hall, New Jersey, p. 1 1988; Fenn, IEEE Transactions on Antennas and Propagation, Vol. 38, number 2, pp. 173-185, 1990; U.S. Pat. Nos. 5,251,645; 5,441,532; 5,540,737; 5,810,888).
Bassen et al., Radio Science, Vol. 12, No. 6(5), November-December 1977, pp. 15-25, shows that an electric-field probe can be used to measure the electric-field pattern in tissue, and in particular, shows several examples in which the measured electric-field has a focal peak in the central tissue. This paper also discusses a concept for real-time measurements of the electric-field in living specimens. However, Bassen et al. did not develop the concept of measuring an electric-field using real-time with an electric-probe to adaptively focus

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for improved safety in externally focused microwave... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for improved safety in externally focused microwave..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improved safety in externally focused microwave... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3196080

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.