Communications – electrical: acoustic wave systems and devices – Echo systems – Distance or direction finding
Reissue Patent
2000-03-23
2001-07-03
Pihulic, Daniel T. (Department: 3662)
Communications, electrical: acoustic wave systems and devices
Echo systems
Distance or direction finding
C367S096000, C280S735000
Reissue Patent
active
RE037260
ABSTRACT:
This application is related to: (i) U.S. patent application Ser. No. 08/505,036 now U.S. Pat. No. 5,653,462, entitled “Vehicle Occupant Position And Velocity Sensor” filed Jul. 21, 1995, which is a continuation of U.S. patent application Ser. No. 08/040,978 now abandoned, filed Mar. 31, 1993, which in turn is a continuation of U.S. patent application Ser. No. 07/878,571 now abandoned, filed May 5, 1992; (ii) U.S. patent application Ser. No. 08/239,978 now abandoned, entitled “Vehicle Interior Identification and Monitoring System” filed May 9, 1994; (iii) U.S. patent application Ser. No. 08/474,786 now U.S. Pat. No. 5,845,000, entitled “Optical Identification and Monitoring System Using Pattern Recognition for use with Vehicles” filed Jun. 7, 1995; (iv) U.S. patent application Ser. No. 08/474,783 now U.S. Pat. No. 5,822,707, entitled “Automatic Vehicle Seat Adjuster” filed Jun. 7, 1995; (v) U.S. patent application Ser. No. 08/474,784 now U.S. Pat. No. 5,748,473, entitled “Automatic Vehicle Seat Adjuster” filed Jun. 7, 1995; and, (vi) U.S. patent application Ser. No. 08/474,782 now U.S. Pat. No. 5,835,613, entitled “Optical Identification and Monitoring System Using Pattern Recognition for use with Vehicles” filed Jun. 7, 1995, which are all incorporated by reference herein.
FIELD OF THE INVENTION
The present invention relates to the field of sensing, detecting, monitoring and identifying various objects, and parts thereof, which are located within the passenger compartment of a motor vehicle. In particular, by means of the present invention, an efficient and highly reliable method for detecting a rear facing child seat (RFCS) situated in the passenger compartment in a location where it may interact with a deploying airbag or for detecting an out-of-position occupant is attained permitting the selective suppression of airbag deployment when the deployment may result in greater injury to the occupant than the crash forces themselves. This is accomplished in part through a method of placement of transducers and novel analysis of the signals from the transducers.
BACKGROUND OF THE INVENTION
1. Prior Art on out-of-position occupants and rear facing child seats
Whereas thousands of lives have been saved by airbags, a large number of people have also been injured, some seriously, by the deploying airbag, and thus significant improvements need to be made in this regard. As discussed in detail in one or more of the copending patent applications cross-referenced above, for a variety of reasons vehicle occupants may be too close to the airbag before it deploys and can be seriously injured or killed as a result of the deployment thereof. Also, a child in a rear facing child seat which is placed on the right front passenger seat is in danger of being seriously injured if the passenger airbag deploys. For these reasons and, as first publicly disclosed in Breed, D. S. “How Airbags Work” presented at the International Conference on Seatbelts and Airbags in 1993, in Canada, occupant position sensing and rear facing child seat detection is required in order to minimize the damages caused by deploying airbags.
Initially these systems will solve the out-of-position occupant and the rear facing child seat problems related to current airbag systems and prevent unneeded and unwanted airbag deployments when a front seat is unoccupied. However, airbags are now under development to protect rear seat occupants in vehicle crashes and all occupants in side impacts. A system will therefore be needed to detect the presence of occupants, determine if they are out-of-position and to identify the presence of a rear facing child seat in the rear seat. Future automobiles are expected to have eight or more airbags as protection is sought for rear seat occupants and from side impacts. In addition to eliminating the disturbance and possible harm of unnecessary airbag deployments, the cost of replacing these airbags will be excessive if they all deploy in an accident needlessly.
Inflators now exist which will adjust the amount of gas flowing to the airbag to account for the size and position of the occupant and for the severity of the accident, e.g., based on the rate of flow of the inflating gas. The vehicle identification and monitoring system (VIMS) discussed in co-pending application Ser. No. 08/239,978, now abandoned, among others, will control such inflators based on the presence and position of vehicle occupants or of a rear facing child seat. The instant invention is an improvement on that VIMS system and uses an advanced ultrasonic system comprising two or more ultrasonic transmitters/receivers combined with a trained neural network pattern recognition system as discussed in much greater detail below.
The automatic adjustment of the deployment rate of the airbag based on occupant identification and position and on crash severity has been termed “smart airbags”. Central to the development of smart airbags is the occupant identification and position system described herein. To complete the development, an anticipatory crash detecting system such as disclosed in U.S. patent application Ser. No. 08/247,760 now abandoned, filed May 23, 1994 is desirable. Prior to the implementation of anticipatory crash sensing, the use of a neural network smart crash sensor which identifies the type of crash and thus its severity based on the early part of the crash acceleration signature should be developed and thereafter implemented. U.S. patent application Ser. No. 08/476,076 now U.S. Pat. No. 5,684,701, filed Jun. 7, 1995 describes a crash sensor based on neural networks. This crash sensor, as with all other crash sensors, determines whether or not the crash is of sufficient severity to require deployment of the airbag and, if so, initiates the deployment. A neural network based on a smart airbag crash sensor could also be designed to identify the crash and categorize it with regard to severity thus permitting the airbag deployment to be matched not only to the characteristics and position of the occupant but also the severity and timing of the crash itself
The need for an occupant out-of-position sensor has also been observed by others and several methods have been disclosed in certain U.S. patents for determining the position of an occupant of a motor vehicle. Each of these systems will be discussed below and unfortunately have significant limitations.
In White et al. (U.S. Pat. No. 5,071,160), for example, a single acoustic sensor and detector is described and, as illustrated, is mounted lower than the steering wheel. White et al. correctly perceive that such a sensor could be defeated, and the airbag falsely deployed, by an occupant adjusting the control knobs on the radio and thus they suggest the use of a plurality of such sensors but do not disclose where they would be mounted, other than on the instrument panel below the steering wheel, or how they would be combined to uniquely monitor particular locations in the passenger compartment and to identify what is occupying those locations.
Mattes et al. (U.S. Pat. No. 5,118,134) describe a variety of methods of measuring the change in position of an occupant including ultrasonic, active or passive infrared and microwave radar sensors, and an electric eye. Their use of these sensors is to measure the change in position of an occupant during a crash and use that information to assess the severity of the crash and thereby decide whether or not to deploy the airbag. They are thus using the occupant motion as a crash sensor. No mention is made of determining the out-of-position status of the occupant or of any of the other features of occupant monitoring as disclosed in the above cross-referenced patent applications. It is interesting to note that nowhere does Mattes et al. discuss how to use a combination of ultrasonic sensors/transmitters to identify the presence of a human occupant and then to find his/her location in the passenger compartment.
The object of an occupant out-of-position sensor is to determine the location of the head and/or chest of the vehicle occupant rel
Breed David S.
DuVall Wilbur E.
Varga Andrew J.
Automotive Technologies International Inc.
Pihulic Daniel T.
Roffe Brian
LandOfFree
Method for identifying the presence and orientation of an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for identifying the presence and orientation of an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for identifying the presence and orientation of an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2556262